资讯详情

【CV】用于图像恢复的深度学习方法综述论文(2022年)

论文名称:A survey of deep learning approaches to image restoration 论文下载:https://www.sciencedirect.com/science/article/pii/S0925231222002089?via=ihub 论文年份:2022年 论文引用:(2022/04/27)

Abstract

In this paper,we present an extensive review on deep learning methods for image restoration tasks. Deep learning techniques,led by convolutional neural networks,have received a great deal of attention in almost all areas of image processing,especially in image classification. However,image restoration is a fundamental and challenging topic and plays significant roles in image processing,understanding and representation. It typically addresses image deblurring,denoising,dehazing and super-resolution. There are substantial differences in the approaches and mechanisms in deep learning methods for image restoration. Discriminative learning based methods are able to deal with issues of learning a restoration mapping function effectively,while optimisation models based methods can further enhance the performance with certain learning constraints. In this paper,we offer a comparative study of deep learning techniques in image denoising,deblurring,dehazing,and super-resolution,and summarise the principles involved in these tasks from various supervised deep network architectures,residual or skip connection and receptive field to unsupervised autoencoder mechanisms. Image quality criteria are also reviewed and their roles in image restoration are assessed. Based on our analysis,we further present an efficient network for deblurring and a couple of multi-objective training functions for super-resolution restoration tasks. The proposed methods are compared extensively with the state-of-the-art methods with both quantitative and qualitative analyses. Finally,we point out potential challenges and directions for future research.

研究意义

在本文中,我们广泛回顾了图像恢复任务的深度学习方法。几乎所有图像处理领域,特别是图像分类领域,都引起了广泛的关注。然而,图像恢复是一个基本而具有挑战性的主题,在图像处理、理解和表达中发挥着重要作用。

【图像恢复的细分研究方向】

图像恢复方法

深度学习图像恢复的方法和机制差异很大。

  • 能有效处理学习恢复映射函数的问题。

  • 可以在一定的学习约束下进一步提高性能。

本文工作

本文对图像去噪、去模糊、去雾、超分辨率等深度学习技术进行了比较研究,

  • 从各种任务中总结了这些任务所涉及的原则机制。
  • 调查了,并评估了它们在图像恢复中的作用。
  • 基于我们的分析,我们进一步提出了一个和几个用

研究结果

广泛比较了最新的定量和定性分析方法。最后,我们指出了未来研究的潜在挑战和方向。

1. Introduction

自上个世纪以来,图像恢复一直是数字图像处理的长期研究课题[1-5],近年来仍然是一个活跃的课题。图像恢复。多维退化观察 (multidimensional degraded observations) 和恢复图像之间的无限可能映射决定了这一点

标签: 新型图像传感器原理

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台