资讯详情

[论文总结] 智慧农业论文摘要阅读概览

文章目录

    • 1. Design of a winter-jujube grading robot based on machine vision (Computers and Electronics in Agriculture)
    • 2. Adaptive filtering-based soft sensor method for estimating total nitrogen in aquaponic systems
    • 3. A method combining ELM and PLSR (ELM-P) for estimating chlorophyll content in rice with feature bands extracted by an improved ant colony optimization algorithm
    • 4.Recognition of carrot appearance quality based on deep feature and support vector machine(2021年3月投稿,5 月5日见刊)
    • 5. Assessment of calibration methods for nitrogen estimation in wet and dry soil samples with different wavelength ranges using near-infrared spectroscopy
    • 6. Field-road trajectory segmentation for agricultural machinery based on direction distribution
    • 7. Large-scale winter catch crop monitoring with Sentinel-2 time series and machine learning–An alternative to on-site controls?
    • 8. Implementing agricultural water pricing policy in irrigation districts without a market mechanism: Comparing the conventional and automatic water distribution systems
    • 9. Development of pulsed electric fields treatment unit to treat wheat grains: Improvement of seed vigour and stress tolerance
    • 10. Knowledge transfer for adapting pre-trained deep neural models to predict different greenhouse environments based on a low quantity of data
    • 10. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network
    • 11. DeepPhenology: Estimation of apple flower phenology distributions based on deep learning
    • 12. Design, development, and performance evaluation of a robot for yield estimation of kiwifruit
    • 13. Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture
    • 14. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods
    • 15. Projection of the climate change effects on soil water dynamics of summer maize grown in water repellent soils using APSIM and HYDRUS-1D models
    • 16. Small-sample learning with salient-region detection and center neighbor loss for insect recognition in real-world complex scena
    • 17. Greenhouse-based vegetable high-throughput phenotyping platform and trait evaluation for large-scale lettuces
    • 18. In-field tea shoot detection and 3D localization using an RGB-D camera
    • 19.Defective egg detection based on deep features and Bidirectional Long-Short-Term-Memory
    • 20. Design, development, and performance evaluation of a robot for yield estimation of kiwifruit
    • 21. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods 南京农业大学曹卫星教师课题组
    • 22. Research of simulation analysis and experimental optimization of banana de-handing device with self-adaptive profiling function
    • 23. Crop height estimation based on UAV images: Methods, errors, and strategies
    • 24. Method for optimizing controlled conditions of plant growth using U-chord curvature
    • 25. Motion-based visual inspection of optically indiscernible defects on the example of hazelnuts
    • 26. The e-funnel trap: Automatic monitoring of lepidoptera; a case study of tomato leaf miner
    • 27. Modeling soil temperature using air temperature features in diverse climatic conditions with complementary machine learning models
    • 28. Apple, peach, and pear flower detection using semantic segmentation network and shape constraint level set
    • 29. Evaluating the sensitivity of water stressed maize chlorophyll and structure based on UAV derived vegetation indices
    • 30. An automatic approach for detecting seedlings per hill of machine-transplanted hybrid rice utilizing machine vision
    • 32. Multi-temporal estimation of vegetable crop biophysical parameters with varied nitrogen fertilization using terrestrial laser scanning
    • 32. Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems
    • 33. A methodology for semantic action recognition based on pose and human-objet interaction in avocado harvesting processes
    • 34. Assessment of potato late blight from UAV-based multispectral imagery
    • 35. Integrated planning for planting and harvesting sugarcane and energy-cane for the production of sucrose and energy
    • 36. Nondestructive detection of decayed blueberry based on information fusion of hyperspectral imaging (HSI) and low-Field nuclear magnetic resonance (LF-NMR)
    • 37. Evaluation of stacking and blending ensemble learning methods for estimating daily reference evapotranspiration
    • 38. Empirical model for forecasting sugarcane yield on a local scale in Brazil using Landsat imagery and random forest algorithm
    • 39. A study on the use of UAV images to improve the separation accuracy of agricultural land areas
    • 40. Non-structural modification of agricultural water distribution systems in large scale irrigation districts
    • 41. Estimation of corn yield based on hyperspectral imagery and convolutional neural network
    • 42. Deep learning for white cabbage seedling prediction
    • 43. Few-shot vegetable disease recognition model based on image text collaborative representation learning
    • 44. A vegetable disease recognition model for complex background based on region proposal and progressive learning
    • 45. Method of famous tea sprout identification and segmentation based on improved watershed algorithm
    • 46. Identification of maize leaves infected by fall armyworms using UAV-based imagery and convolutional neural networks
    • 47. Determination of application volume for coffee plantations using artificial neural networks and remote sensing
    • 48. UAV-based high-throughput phenotyping to increase prediction and selection accuracy in maize varieties under artificial MSV inoculation
    • 49. A deep learning approach for RGB image-based powdery mildew disease detection on strawberry leaves
    • 50. Sequential forward selection and support vector regression in comparison to LASSO regression for spring wheat yield prediction based on UAV imagery
    • 51. Application of non-destructive sensors and big data analysis to predict physiological storage disorders and fruit firmness in ‘Braeburn’ apples
    • 52. Automated in-field leaf-level hyperspectral imaging of corn plants using a Cartesian robotic platform
    • 53. Detection, classification, and mapping of coffee fruits during harvest with computer vision
    • 54. An automated zizania quality grading method based on deep classification model
    • 55. Tea moisture content detection with multispectral and depth images
    • 56. Detecting soybean leaf disease from synthetic image using multi-feature fusion faster R-CNN
    • 57. Disease and pest infection detection in coconut tree through deep learning techniques
    • 58. Deep learning for the differentiation of downy mildew and spider mite in grapevine under field conditions
    • 59. Identification of stored grain pests by modified residual network
    • 60*. A non-destructive and highly efficient model for detecting the genuineness of maize variety 'JINGKE 968′ using machine vision combined with deep learning(IDEA:检测种子和道地药材)
    • 61. Optimised ANN and SVR models for online prediction of moisture content and temperature of lentil seeds in a microwave fluidised bed dryer
    • 62. A deep learning approach for anthracnose infected trees classification in walnut orchards
    • 63. Modeling spatial and temporal optimal N fertilizer rates to reduce nitrate leaching while improving grain yield and quality in malting barley
    • 64. Development of an automated plant phenotyping system for evaluation of salt tolerance in soybean (IDEA)
    • 65. Sugarcane nodes identification algorithm based on sum of local pixel of minimum points of vertical projection function
    • 66. Nondestructive measurement of husk-covered corn kernel layer dynamic moisture content in the field
    • 67. Improved multi-classes kiwifruit detection in orchard to avoid collisions during robotic picking
    • 68. Irrigation decision method for winter wheat growth period in a supplementary irrigation area based on a support vector machine algorithm
    • 69. Multispectral image based germination detection of potato by using supervised multiple threshold segmentation model and Canny edge detector
    • 70. A high-precision detection method of hydroponic lettuce seedlings status based on improved Faster RCNN
    • 71. A virtual sensor simulation system of a flower greenhouse coupled with a new temperature microclimate model using three-dimensional CFD
    • 72. Leaf image-based classification of some common bean cultivars using discriminative convolutional neural networks
    • 73. A decision support system for tobacco cultivation measures based on BPNN and GA
    • 74. Calibration and validation of soil water balance (SWB) model in the Inner Argentinian Pampas
    • 75. Stereo-vision-based crop height estimation for agricultural robots
    • 76. Detection of impurities in wheat using terahertz spectral imaging and convolutional neural networks
    • 77. Regional estimation of garlic yield using crop, satellite and climate data in Mexico
    • 78. Development of a mobile computing framework to aid decision-making on organic fertilizer management using a crop growth model
    • 79. Detection of typical obstacles in orchards based on deep convolutional neural network
    • 80. Predicting the sugarcane yield in real-time by harvester engine parameters and machine learning approaches
    • 81*. Machine learning techniques for classifying the sweetness of watermelon using acoustic signal and image processing (立意有趣)
    • 82. Mapping cotton cultivated area combining remote sensing with a fused representation-based classification algorithm
    • 83. Wood species automatic identification from wood core images with a residual convolutional neural network
    • 84. Hardness recognition of fruits and vegetables based on tactile array information of manipulator
    • 85. Regional estimation of garlic yield using crop, satellite and climate data in Mexico
    • 86. Hyperspectral imaging techniques for rapid detection of nutrient content of hydroponically grown lettuce cultivars
    • 87. Semantic segmentation for partially occluded apple trees based on deep learning (语义分割,苹果)
    • 88. Effects of application height and crosswind on the crop spraying performance of unmanned helicopters
    • 89.Spatial domain bridge transfer : An automated paddy rice mapping method with no training data required and decreased image inputs for the large cloudy area
    • 90. Disease detection in tomato leaves via CNN with lightweight architectures implemented in Raspberry Pi 4
    • 91. A cloud computing-based approach using the visible near-infrared spectrum to classify greenhouse tomato plants under water stress
    • 92. Classifying season long livestock grazing behavior with the use of a low-cost GPS and accelerometer
    • 93. Measuring pecan nut growth utilizing machine vision and deep learning for the better understanding of the fruit growth curve
    • 94. Predicting pasture biomass using a statistical model and machine learning algorithm implemented with remotely sensed imager
    • Improving TLS-based stem volume estimates by field measurements
    • 95.Predicting pasture biomass using a statistical model and machine learning algorithm implemented with remotely sensed imagery
    • 96. Integration of RGB-based vegetation index, crop surface model and object-based image analysis approach for sugarcane yield estimation using unmanned aerial vehicle
    • 97.Irrigation water infiltration modeling using machine learning
    • 98.Short term soil moisture forecasts for potato crop farming: A machine learning approach
    • 99. Recognizing black point in wheat kernels and determining its extent using multidimensional feature extraction and a naive Bayes classifier
    • 100. Neural network soil moisture model for irrigation scheduling
    • 101. Rice nitrogen nutrition estimation with RGB images and machine learning methods
    • 102. A diagnostic visible/near infrared tool for a fully automated olive ripeness evaluation in a view of a simplified optical system
    • 103. Quality estimation of nuts using deep learning classification of hyperspectral imagery
    • 104. fruclimadapt:用于温带水果物种气候适应性评估的R包

1. Design of a winter-jujube grading robot based on machine vision (Computers and Electronics in Agriculture)

摘要:Winter-jujube(冬枣)在中国是一种新鲜的水果。 收获后,winter-jujubes需要年级分成不同的类别根据其。 成熟winter-jujube可以认可他们的红色。 在这项研究中,。 此外,一个方法结合。 分级机器人由传输单元,一个图像采集单元和一个致动器单元。 基于YOLOv3算法,检测模型训练,并与SSD和更快的R-CNN算法。 当借据0.7、0.8和0.9,模型的F1分数是100%,100%,和93.66%,分别。 地图(借据= 0.50:0.05:0.95)模型的是94.78%,和单一图像的检测时间0.042秒。 检测模型展览在不同照明条件下稳定性高。 此外,图像中重叠winter-jujubes可以准确检测。 图像畸变校正和对象检测后,图像处理流的空间定位、尺寸测量和成熟为winter-jujubes设计计算。 最后,一个实时分级装置winter-jujube建立执行分级实验。 成熟度分级精度97.28%,每个winter-jujube的平均评分时间是1.39秒。

评分:目标检测+1分,分级机器人+3分,数据集不明确无法判断。

2. Adaptive filtering-based soft sensor method for estimating total nitrogen in aquaponic systems

摘要:aquaponic系统可以满足不同需求的水产品和植物利用营养流来提高经济效益。 氮是一个等关键营养元素的过程。 高氮浓度可以恶化水质,这可能会进一步导致大规模死亡的典型的鱼类或贝类。 因此,它是特别重要的监控管理水产品和植物的氮浓度增长aquaponic系统。 传感器测量氮浓度是商用,但他们往往是昂贵的和不可靠的服务。 同时,研究氮浓度的软测量是非常有限的。 因此,本文提出了一种新的自适应filtering-based软测量方法总氮浓度的实时估计。 这种方法提供了准确预测通过集成机械模型,在线测量(例如鱼类生物量、温度)和总氮的罕见的离线测量。 地平线动估计(加入)算法用于联合状态和参数估计,从而允许修正模型参数之间的不匹配和真正的过程。 此外,适当的离线氮测量频率决定软测量精度和成本之间的平衡。 通过计算机模拟研究aquaponic系统,该方法是有效的提供有前途的实时预测性能。 通过应用校正方法,RMSE(均方根误差)的氮浓度估计平均减少31.86%相比,模拟实际情况。 总之,该软测量方法可以提供有用的监测总氮在aquaponics”,和这些信息可以用于优化操作。

评分:软传感器+2分,其他看不出来。摘要写的一般,背景内容太多。

3. A method combining ELM and PLSR (ELM-P) for estimating chlorophyll content in rice with feature bands extracted by an improved ant colony optimization algorithm

摘要:利用光谱信息快速检测大米树冠叶子中的叶绿素含量、无损、准确地水稻生长有很大的现实意义评价、精确施肥和科学管理。 本文在中国东北粳米为研究对象,和大米树冠高光谱数据的关键增长阶段通过情节实验。 首先,标准正态变量(SNV)和SG平滑方法用于高光谱数据进行预处理,基于光谱数据处理和蚁群优化算法(ACO),一种改进的(AU-ACO)提出了选择特性的叶绿素含量通过引入一种自适应调整挥发系数的策略和最优信息素更新策略在不同的阶段,并与标准的ACO算法和full-band建模方法。 然后,提取的特征频带和full-band作为输入,考虑线性模型和非线性模型的优点,一。 在这个模型中,PLSR用于获得初步预测水稻的叶绿素含量,并得到了线性趋势,然后非线性逼近能力强的榆树是用来预测的偏差PLSR模型,最终的预测价值是通过叠加的两个输出。 为了验证该模型的优越性,PLSR和榆树预测模型也建立了通过乐队的full-band和特性不同的萃取方法作为输入。 仿真实验结果表明,在相同的预测模型条件下,提出的特征提取的乐队AU-ACO算法作为输入可以降低模型的复杂度,提高模型的预测性能。 决定系数(R2-P)的测试集和决定系数(R2-C)每个模型的训练集都大于0.6785,其中,ELM-P模型提取的特征频带,AU-ACO算法作为输入的预测精度最高,R2-C和R2-P分别为0.7969和0.7918,RMSE -C和RMSE -P分别为1.2969和1.1293 mg / L,这可以提供宝贵的参考检测和评估在粳稻水稻叶绿素含量。

评分: 无人机+自己数据集=5分;图像分割?+模型设计+3分;目测7-8分。

4.Recognition of carrot appearance quality based on deep feature and support vector machine(2021年3月投稿,5 月5日见刊)

摘要:胡萝卜外观质量是胡萝卜分级的重要指标,因此准确识别胡萝卜加工中的胡萝卜外观质量至关重要。本文提出了一种创新的胡萝卜外观检测方法,利用卷积神经网络提取图像特征信息,并采用支持向量机进行分类。首先,基于12种模型的深度特征被用于训练支持向量机。提取了网络模型的三层全连接层(AlexNet,VGG16,VGG19)的深层特征,并将其导入支持向量机中。结果表明:(1)支持向量机的深度特征精度优于迁移学习模型,平均精度提高了1.42%。 (2)基于初始完整连接层的三个模型(AlexNet,VGG16,VGG19)的准确性分别为98.13%,98.06%和97.88%。最好的模型是ResNet101 + SVM,其识别精度为98.17%。因此,该方法对胡萝卜分级的发展具有积极的意义。

评分:特征提取+1分,不知道怎么评。

5. Assessment of calibration methods for nitrogen estimation in wet and dry soil samples with different wavelength ranges using near-infrared spectroscopy

摘要:选择一个合适的波长范围,提取最优波长变量,并选择合适的统计分析方法是非常重要的改善土壤氮(N)的预测精度与近红外(NIR)光谱。 在这项研究中,两种不同的波长范围的预测性能,较短的波长范围(SWR) 900 - 1700 nm和一个完整的波长范围(FWR) 900 - 2500海里,是评价土壤N含量的测量。 光谱扫描进行湿和dry-sieve土壤样本评估土壤水分预测性能的影响两种校准方法,常用的线性偏最小二乘回归(PLSR)和非线性反向传播神经网络(摘要)。 了解是否有可能减少波长变量的数量没有减少预测的准确性,我们引入一个波长连续投影算法(SPA)提取最小冗余的变量。 结果表明,模型在SWR发达在FWR比那些发达,无论湿或干燥的土壤条件,这可以归因于存在更多的光谱信息与FWR土壤N有关。 与PLSR相比,摘要是一个更好的选择对于预测土壤N,因为摘要模型提供更高的精度。 最好的预测性能是通过摘要方法FWR使用SPA和Rp2= 0.93,RMSEP = 0.0297%, RPD = 4.00湿土壤样本,和Rp2= 0.99,RMSEP = 0.0132%, RPD = 8.76干土壤样本。 此外,我们表明,使用SPA算法大大减少了波长变量的数量,同时保持较高的预测精度。 选择的特征波长SPA算法遵循材料光谱吸收的原则。 值得注意的是,干燥的土壤条件导致性能优越在潮湿的土壤条件的测量土壤N,这可以归因于含水率的波长区域的去除效果和利用重要的吸收特性。 然而,即使在潮湿的土壤条件,简化校准模型的基础上选定的温泉浴场变量获得优秀的定量预测SWR范围使用摘要方法,与Rp2= 0.91,RMSEP = 0.0305%, RPD = 3.47。 扩大大规模检测应用程序是很重要的测量土壤N。

评分: 自己数据集+实验=3-5分,特征提取+反向传播神经网络=2分,总分5-7分。

6. Field-road trajectory segmentation for agricultural machinery based on direction distribution

**Field-road分割自动轨迹(自动寻优)**分为一系列的字段/公路段是一个重要的组件在分割过程中农业机械的轨迹。 地理空间坐标记录下来的轨迹是一个序列GNSS接收器在机器的驱动。 本文的目的是开发一个field-road分割方法的领域边界信息的不可用。 发达的方法由两个阶段组成。 第一阶段使用DBSCAN,典型的聚类算法,field-road分割,第二阶段使用基于规则的推理正确的两种类型的错误分割情况下输出的DBSCAN-based集群。 基于平行方向分布在同一领域几乎是平行的,两个推理规则,Field2Road-Cluster和Road2Field-Segment按顺序执行。Field2Road-Cluster使用方向分布差异(并行领域比在路上不平行)分割病例和纠正错误的字段Road2Field-Segment使用并行关系条在同一字段分割情况下纠正错误的道路。 发达的方法验证了60所选轨迹。 结果表明,基于规则的推理实现增长7.95%在F1的分数,在哪里Field2Road-Cluster和Road2Field-Segment分别增加了6.40%和1.55%。 评分: 评分不高低于5分。

7. Large-scale winter catch crop monitoring with Sentinel-2 time series and machine learning–An alternative to on-site controls?

欧盟立法的指导方针在共同农业政策(CAP)导致的义务用以cross-compliant绿化措施,欧盟国家的信息。 但通过现场控制,农业部门可以监视所有注册的包裹的只有一小部分。 哥白尼计划,免费Sentinel-1和Sentinel-2图像越来越多地支持大规模远程sensing-based农业监控。 然而,大多数原型的主题缺乏冬季种植。 因此,我们开发了。 归一化植被指数(NDVI)时间序列计算为每个包裹从Sentinel-2数据内典型的冬季作物种植季节(July-April)。 我们发现独特的时间赶上种植模式和。 然后,我们训练15随机森林分类器组成的不同地区和年,进行了多层次的验证识别模型鲁棒性最高的新数据。 随机森林分类器训练输入数据来自所有联邦州和年表现优于其它模型。 达到84%的平均预测精度两类(抓住作物和non-catch作物)在11个不同的时空领域。 最佳年度天气条件下达到精度接近90%。 异常引起的热浪和初霜冻事件被发现有很高的影响引起作物的物候学,从而导致预测精度降低。 从预测因素的集合,这些特性重要性最高的测量观测时间序列之间的相关性和模拟NDVI物候资料。 我们得出的结论是,赶上裁剪包裹会自动分离与其他冬天从包裹查看(如冬季谷物,草地,休闲)Sentinel-2 NDVI时间序列数据。 不同作物子组(即。 、种子混合)不能分化我们的方法由于物候资料非常相似。 尽管如此,方法允许用于大规模冬天抓作物监测和支持当局的选择包裹高需求进行现场控制。 通过合并从不同的联邦州和年的训练数据集,我们可以克服典型的时空机器学习的过度拟合问题。 因此,该研究的最终分类器可以可靠地转移到新的数据集在德国和其他地区具有类似bio-geographical条件。

评分:大量的大田实验数据+5分,6分左右。

8. Implementing agricultural water pricing policy in irrigation districts without a market mechanism: Comparing the conventional and automatic water distribution systems

9. Development of pulsed electric fields treatment unit to treat wheat grains: Improvement of seed vigour and stress tolerance

脉冲电场(PEF)处理可能造成潜在的替代化学用于种子表面消毒和种子活力提高。 为了测试的有效性PEF治疗,一个新的PEF处理单元设计和用于治疗小麦谷物的能量范围1.07 - -17.28 J。 相比控制样本,所有PEF治疗显著增加萌发和幼苗率10 28%,分别。 电导率是影响延迟测量的时间而不是PEF处理。 PEF-treated种子样本有显著较高的耐冷和盐压力。 内生微生物群落的总需氧嗜中温细菌和霉菌和酵母菌总被应用能量显著降低。 盐胁迫8天纳希(100毫米)表现出最高的98.43%的预测力modellıng研究。 19岁的多目标优化反应指着161.8赫兹,6.1,和19.5年代的最优设置(D = 0.52)。 得出结论,PEF处理小麦种子活力,改善促进寒冷和盐胁迫耐受性,灭活表面微生物区系。

评分:这是一篇偏向农业实验的论文。

10. Knowledge transfer for adapting pre-trained deep neural models to predict different greenhouse environments based on a low quantity of data

深入学习是机器学习的先进的应用在许多领域,这技术也被应用于农业。 大量的数据需要提供深度学习模型在培训过程; 然而,提供足够的数据可能不是在考虑农业的应用。 转移学习,这是一个学习策略的快速和容易的适应pre-trained模型,可以解决农业数据有限。 因此,本研究的目的是验证pre-trained模型的适应性预测温室的环境变量通过再培训模型与数据从一个新的培养条件下,使用学习转移技术。 因此,转移学习方法应用于五常见深学习模型。 27温室(14甜辣椒和番茄查看13日)在不同地区的韩国这个研究提供了实验数据。 分析了环境变量的内部温度、相对湿度、辐射、有限公司2浓度,和外部的温度。 学习过程进行转移之前,一些层pre-trained模型替换为新层。 模型,此后,培训新的测试数据集。 最好的模型训练过程是BiLSTM,导致平均R20.69。 模型可以预测环境变化的趋势,这表明他们训练有素。 最准确的深度学习模型考虑传输数据集是BiLSTM转移,平均R2甜辣椒和番茄的0.78和0.81数据集,分别。 大多数转移模型的精度高于相应的深度学习模型。 因此,转移学习可以适应之前训练的深度学习模型,使他们能够与稀缺数据预测温室的小气候。 此外,先进的学习策略会增加转移转移模型的性能分析研究。 评分: 大量实验数据+5分。

10. Real-time detection of uneaten feed pellets in underwater images for aquaculture using an improved YOLO-V4 network

在水产养殖的实时检测和监控,制定饲料颗粒消费是一个重要的基础科学喂养策略,可以有效地减少饲料浪费和水污染,这是一种双赢的情况的经济和生态效益。 然而,低质量的水下图像和非常小的目标目前饲料颗粒检测带来了极大的挑战。 为了克服这些挑战,本文提出了一种吃饲料颗粒检测模型使用一种改进的你只看一次(YOLO)意思v4网络水产养殖。 具体实现方法如下:(1)功能映射原YOLO-V4负责大规模信息网络所取代细粒度YOLO特性意思通过修改地图的连接模式特征金字塔网络(红外系统)+路径聚合网络(PANet)。 (2)剩余连接模式通过DenseNet CSPDarknets被修改,这也进一步提高了功能重用和网络性能。 (3)最后,de-redundancy操作进行减少YOLO-V4网络的复杂性同时确保检测的准确性。 在真正的养鱼场实验结果表明,检测精度优于原YOLO-V4网络,和平均精度从65.40%提高到92.61%(当十字路口在联盟是0.5),增长了27.21%。 此外,计算量减少了约30%。 因此,改善YOLO-V4网络可以有效地探测水下饲料颗粒和适用于实际的水产养殖环境。

评分:因为做水体较少+1分,实验+2分,目标检测+1分;改进方法应用+2分。

11. DeepPhenology: Estimation of apple flower phenology distributions based on deep learning

园艺作物物候学分布估计是非常重要的,因为它控制化学稀释的时机以生产优质水果。 介绍了一种新颖的物候学分布估计方法命名DeepPhenology为苹果鲜花基于cnn使用RGB图像,能够有效地映射花分布在一个映像级别,行级,块级。 图像分类模型VGG-16直接训练相对物候学分布从手工数计算的鲜花,获得图像。 该方法消除了需要标签图像,克服困难在区分重叠花集群或识别隐藏的串串在使用2 d图像。DeepPhenology测试在日间和夜间使用RGB图像捕捉相机安装在地面车辆在联欢晚会和粉红女士在澳大利亚果园品种。 平均Kullback-Leibler(吉隆坡)散度值为0.23时所有验证集和平均KL值为0.27在所有测试集。 进一步评估已经完成,通过比较该模型与YOLOv5证明比这先进的目标检测模型的任务。 结合相对物候学分布从一个图像行级或块级分布,我们可以给农民一个精确的和高度概括块性能的化学变薄形成决策的基础应用。

评价:自己数据集3分,目标检测+1分,方法改进+2分,yolov5对比+1分=7分。

12. Design, development, and performance evaluation of a robot for yield estimation of kiwifruit

机器人的应用之一farmer-assistant平台配备机器视觉系统是生产产量的评估之前收获而不会破坏产品。 在这种情况下,农民获得适当的信息收集和收获后管理决定所需的人力资源,收集设备、存储空间、交通、和产品营销。 在这项研究中,机器视觉系统对履带式汽车设计和开发产量估计旅行沿着猕猴桃猕猴桃的格子。 几个特性,即。 、强度直方图、面向梯度直方图的形状上下文,和局部二进制模式,从植物,从捕获的图像中提取图像和猕猴桃的数量是预计使用支持向量机(SVM)。 提高支持向量机的性能,其参数优化使用进化优化方法,即粒子群优化(PSO),蚁群优化(ACO),差分进化(DE)和遗传算法(GA)。 该方法的性能比较与几个深度学习技巧。 的R2预测猕猴桃的数量等于获得的图像是0.96,0.91,0.73,0.83,0.90,0.63,该方法,FCN-8S, ZFNet, AlexNet, GoogleNet和ResNet分别。 此外,结果表明,支持向量机提高PSO施加最高precision-recall曲线下的面积相比,深度学习的方法。 本研究的结果可以用于适当的实施精准农业和农业投入的管理。

评分:自己的大田实验3-4分。优化方法较多+1分,论文4-5分。

13. Multi-stream hybrid architecture based on cross-level fusion strategy for fine-grained crop species recognition in precision agriculture

精确农业的目标是优化作物生产过程和管理可持续供应链实践尽可能更有效和合理的。 最近,各种先进的技术,如深度学习和物联网(物联网),取得了非凡的智力发展现实的农业条件。 然而,作物物种识别可以被认为是细粒度的视觉分类(FGVC)问题,痛苦的低类的差异和高内部类方差所属类别,比普通的基层分类更具挑战性的分类取决于传统深层神经网络(款)。 摘要提出了一种不同作物物种在实际农田的场景。 提出MCF-Net由交叉阶段部分(CSPNet)作为骨干网络模块,三个并行子网,横向校正融合模块。 进行多流混合架构”与利用大规模fine-granulometric信息,MCF-Net获得更好的表示能力区分阶级之间的差异和容忍内部类差异。 此外**,实现端到端优化MCF-Net的横向校正融合策略准确识别不同的作物类别**。 几个实验CropDeepv2数据表明,我们的方法与最先进的方法。 识别的准确性和F1-score MCF-Net达到竞争非常激烈的结果分别高达90.6%和0.962,均优于对比模型显示更好的识别精度和模型稳定性的方法。 此外,MCF-Net只有807兆字节的总体参数与实现一个好的平衡模型的性能和复杂性。 这是可以接受和适用于物联网的实现平台在精确农业实践。

评分: 细粒度视觉分类任务+3分。

14. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods

精确作物管理在现代农业需要及时有效的获取作物生长信息。 最近,无人机系统(uas)迅速发展,目前广泛应用于农作物遥感(RS)。 植被指数(VI)和颜色指数(CI)是常用的遥感方法监测作物。 纹理是图像的内在信息,它可以反映作物树冠结构和用于植被分类。 本研究的目的是探索相结合的潜在VI、CI、结构改善小麦生长参数的估计精度,基于固定翼无人机图像。 小麦田间试验在兴华试验站进行了2017 - 2019年连续两年在三个小麦品种5岁以下氮肥率。 两个常用的小麦生长参数、叶面积指数(LAI)和叶片干物质(LDM),同步麦田无人机图像,得到关键的增长阶段。 简单的回归(SR)是用来确定定量遥感变量之间的关系(VI、CI和纹理)和赖,LDM。 数据显示,个人的纹理与小麦生长参数并不相关,而纹理指数(TI),包含两个纹理测量,显示更强的相关性与LAI和LDM。 利用简单的回归(SR)、第六(R2> 0.65,推定< 21.87%)表现出最好的精度估计赖和LDM,其次是TI (R2> 0.51,推定< 26.28%)和CI (R2> 0.34,推定< 27.74%)。 看不到多元线性回归(MLR)和随机森林(RF)进一步用来开发赖和LDM评估模型使用不同的输入变量集(VIs、VIs +独联体和活力+ CIs + TIs)。 与SR和高钙相比,RF模型力相结合,独联体,赖,这大大提高了估计的准确性和LDM, R和验证2最好的射频模式赖和LDM估计达到了0.78和0.78(推定= 17.32%和13.83%)在pre-heading阶段,0.81和0.77(推定= 17.86%和16.08%)在post-heading阶段,和0.76和0.75(推定= 18.13%和16.79%)在所有阶段,分别。 本研究表明,图像纹理可以帮助小麦赖监控来实现更高的估计精度和LDM,和固定翼无人机是一个有前途的平台,可以为大型作物管理提供可靠的数据。 评分:大量大田实验+5分,

15. Projection of the climate change effects on soil water dynamics of summer maize grown in water repellent soils using APSIM and HYDRUS-1D models

土壤斥水性极大地影响作物生长和土壤水分运动。 本研究的目的是为了估算土壤水分动态存储(慢波睡眠),实际蒸散(等一个),根水吸收(RWU)和实际蒸发(E一个)年度作物生长在防水处理(WR)土壤在未来气候情景。 土壤水力参数校准和验证基于实验数据的HYDRUS-1D在2016年和2017年。 夏玉米生长周期和灌溉计划生成与农业生产系统模拟器(APSIM)。 每日慢波睡眠,等一个、RWU和E一个值从五个防水处理治疗模拟对夏玉米生长周期在1981 - 2000,2030 - 2059和2060 - 2089使用八选定的全球气候模型两个代表通路(RCP 4.5和8.5 RCP)浓度。 由于温度的增加,生长期减少12日到27日的天,总慢波睡眠,等一个、RWU和E一个下降了8.1% -21.1%,2.2% -11.1% 0.5% -9.6% -9.7%和0.8%基线期,分别。 慢波睡眠总量的变化,等一个、RWU和E一个在整个夏天,玉米生长周期在RCP 4.5大于8.5 RCP同期。 值总额的慢波睡眠,等一个、RWU和E一个在2030 - 2059年高于2060 - 2089年为同一RCP的场景。 随着初始水滴渗透时间、总慢波睡眠E一个增加,而等一个和RWU下降。 全球环流模型(GCM)和周期不确定性做出了巨大贡献。 研究结果暗示,有必要调整夏玉米的种植日期。

评价:这是纯农学论文。

16. Small-sample learning with salient-region detection and center neighbor loss for insect recognition in real-world complex scena

rios 最真实的场景面临小样本和的问题。 对于许多罕见的昆虫类,收集大量的训练样本不可行,甚至是不可能的。 相比之下,人类是能够识别一个新。 这激励我们解决小样本问题的识别和细粒度识别昆虫通过识别和定位; 这可以提供一个有效的治疗数据匮乏和两种技术可以从彼此引导。 在本文中,我们提出一个关键地区最大的细粒度的昆虫分类区别的特征。 学习者学会预测前景和背景面具等本地化,被训练在训练集带注释的边界框。 此外,进一步产生区别的特性,一个中心的邻居损失函数是用来构建一个健壮的特征空间分布。 该模型对我们的威胁是训练有素的端到端数据集,包括220年昆虫类从一个真实的复杂环境。 与使用典型的网络方法相比,该方法实现了一个性能优越,平均识别率(前5的准确性)的57.65%,并能有效地识别昆虫在小样本和复杂的景象条件下。

评价:细粒度识别3分。

17. Greenhouse-based vegetable high-throughput phenotyping platform and trait evaluation for large-scale lettuces

(北京农科院做的)

对生菜资源进行大规模筛选和评估,对于帮助发现显著特征和帮助遗传育种具有重要价值。在这项研究中,建立了高通量表型平台(VHPP),以评估各种生菜品种的多维特性。该平台包含一个具有四度自由度的成像单元(DOF),。该平台还具有 (GSPP),用于在顺序图像中定位盆,并在不同的生长点匹配每个工厂。基于多维图像的特征被自动提取并分为六类,包括**几何、结构、纹理、颜色、颜色瞬间和色指数。**我们通过主要组件 (PC)、相关性和遗传性分析计算和评估了 63 个静态特征 (ST) 和 189 个动态特征 (DT),新的 PC 在描述生菜树冠时提供了有价值的视角。结果表明,表型系统和管道能够快速调查和评估数千种蔬菜的生长状况。此外,我们确定了许多有价值的特征,这些特性对于揭示复杂特征的遗传基础和探索用于大规模生菜筛选和评估的优秀特性具有积极意义。

评分:大量实验+5分。全球语义表型管道(GSPP)是什么? 这个做的是目标检测。 6-7分。

18. In-field tea shoot detection and 3D localization using an RGB-D camera

茶芽检测和本地化是极具挑战性的任务,因为照明不同,不可避免的遮挡,微小的目标,和密集的增长。为了实现茶园茶笋的自动采摘,开发了基于红色、绿色、蓝色深度 (RGB-D) 相机图像的可靠算法,用于检测和定位采茶机器人的田间茶芽。在这项研究中,首次为茶园中收集的多个时期和品种的图像建立了标签标准。然后,一个"你只看一次"(YOLO)网络被用来检测茶芽(一个芽与一叶)区域的RGB图像收集的RGB相机。此外,茶笋的检测精度为93.1%,召回率为89.3%。为了实现采摘位置的三维(3D)定位,通过融合 RGB-D 摄像机捕获的深度图像和 RGB 图像,获取了检测目标区域的 3D 点云。然后,使用点云预处理消除噪声,利用欧几里德聚类处理和目标点云提取算法获取茶芽点云。最后,结合茶芽生长特性、点云特征、套管采摘方案,确定了茶笋的3D采摘位置,解决了采摘点在田间看不见的问题。为了验证建议算法的有效性,茶园进行了茶笋本地化和采摘实验。茶笋采摘成功率为83.18%,每个目标的平均定位时间约为24毫秒。所有结果表明,建议的方法可用于机器人采茶。

评分:

19.Defective egg detection based on deep features and Bidirectional Long-Short-Term-Memory

鸡蛋是全世界最重要的营养来源之一。此外,蛋壳中可能出现的缺陷危及食品安全,对生产企业造成不利影响。由于经济和健康原因,将有缺陷的鸡蛋与优质鸡蛋自动分离是一个重要问题。基于这种动机,开发了基于深度学习的实时机器视觉系统,用于检测破裂、血腥和肮脏的鸡蛋。在这项研究中,设计了一个连续旋转系统来可视化鸡蛋的所有表面。因此,在鸡蛋的任何表面可能发生的污垢、血液和裂缝等不良条件都得到了成功的监测。在建议的强子卵子检测系统中,使用预先训练的剩余网络模型提取深层特征,然后将获得的特征输入双向长期长期记忆 (BILSTM)。建议模型的效率是使用脏、血腥、破裂和坚固的鸡蛋图像与开发的机器视觉系统计算的。实验结果表明,该模型的准确率达到99.17%。所获得的结果还与最先进的方法进行了比较,并观察到建议的模型在比较方法中表现出最高的准确性。

评分:这个论文不咋地。大量实验+3分。

20. Design, development, and performance evaluation of a robot for yield estimation of kiwifruit

机器人的应用之一farmer-assistant平台配备机器视觉系统是生产产量的评估之前收获而不会破坏产品。 在这种情况下,农民获得适当的信息收集和收获后管理决定所需的人力资源,收集设备、存储空间、交通、和产品营销。 在这项研究中,机器视觉系统对履带式汽车设计和开发产量估计旅行沿着猕猴桃猕猴桃的格子。 几个特性,即强度直方图、面向梯度直方图的形状上下文,和局部二进制模式,从植物,从捕获的图像中提取图像和猕猴桃的数量是预计使用支持向量机(SVM)。 提高支持向量机的性能,其参数优化使用进化优化方法,即粒子群优化(PSO),蚁群优化(ACO),差分进化(DE)和遗传算法(GA)。 该方法的性能比较与几个深度学习技巧。 的R2预测猕猴桃的数量等于获得的图像是0.96,0.91,0.73,0.83,0.90,0.63,该方法,FCN-8S, ZFNet, AlexNet, GoogleNet和ResNet分别。 此外,结果表明,支持向量机提高PSO施加最高precision-recall曲线下的面积相比,深度学习的方法。 本研究的结果可以用于适当的实施精准农业和农业投入的管理。

评价:机器人应用+机械设计=5分; 多种优化方法+2分=7分

21. Combining texture, color, and vegetation indices from fixed-wing UAS imagery to estimate wheat growth parameters using multivariate regression methods 南京农业大学曹卫星老师课题组

精确作物管理在现代农业需要及时有效的获取作物生长信息。 最近,无人机系统(uas)迅速发展,目前广泛应用于农作物遥感(RS)。 。 纹理是图像的内在信息,它可以反映作物树冠结构和用于植被分类。 本研究的目的是探索相结合的潜 小麦田间试验在兴华试验站进行了2017 - 2019年连续两年在三个小麦品种5岁以下氮肥率。 两个常用的小麦生长参数、**叶面积指数(LAI)和叶片干物质(LDM),**同步麦田无人机图像,得到关键的增长阶段。 简单的回归(SR)是用来确定定量遥感变量之间的关系(VI、CI和纹理)和赖,LDM。 数据显示,个人的纹理与小麦生长参数并不相关,而纹理指数(TI),包含两个纹理测量,显示更强的相关性与LAI和LDM。 利用简单的回归(SR)、第六(R2> 0.65,推定< 21.87%)表现出最好的精度估计赖和LDM,其次是TI (R2> 0.51,推定< 26.28%)和CI (R2> 0.34,推定< 27.74%)。 看不到多元线性回归(MLR)和随机森林(RF)进一步用来开发赖和LDM评估模型使用不同的输入变量集(VIs、VIs +独联体和活力+ CIs + TIs)。 与SR和高钙相比,RF模型力相结合,独联体,赖,这大大提高了估计的准确性和LDM, R和验证2最好的射频模式赖和LDM估计达到了0.78和0.78(推定= 17.32%和13.83%)在pre-heading阶段,0.81和0.77(推定= 17.86%和16.08%)在post-heading阶段,和0.76和0.75(推定= 18.13%和16.79%)在所有阶段,分别。 本研究表明,,和固定翼无人机是一个有前途的平台,可以为大型作物管理提供可靠的数据。

评分:大量大田数据和无人机图片=5分。

22. Research of simulation analysis and experimental optimization of banana de-handing device with self-adaptive profiling function

针对问题的高劳动强度、低效率和潜在的健康危害手动de-handing操作在当前香蕉收获和de-handing过程中,我们学习了机械香蕉de-handing的关键技术和测试操作的稳定性和普遍性的香蕉de-handing设备。 香蕉的自适应分析性能de-handing设备群香蕉茎和不规则的几何形状是关键和难点香蕉de-handing实现机械化。 因此,运动学的分析径向de-handing设备进行自适应机制,基于de-handing刀具的运动特点,de-handing刀具安装在旋转的自适应机制。 仿真分析结果表明,该自适应包络de-handing设备群香蕉茎的性能是好的,de-handing设备稳定、可靠地工作。 此外,de-handing刀具的静态分析结果表明,刀具的最大应力远小于实际的香蕉de-handing操作期间它的极限应力,和刀不会永久变形或损坏。 最后,更新后的香蕉de-handing装置作为实验平台验证的协调功能和操作的实用性的de-handing设备,单因素实验和响应面优化实验进行了香蕉de-handing。 香蕉的切口质量的手后de-handing de-handing装置的工作性能和测量和评估。 我们的研究提供了一个参考为提高香蕉de-handing设备群的自适应分析性能跟踪和优化香蕉de-handing装置的设计,从而为发展奠定了基础,制造业,促进机械化、自动化和智能香蕉de-handing设备。

评分:这是一篇关于农业机械设备设计的论文。

23. Crop height estimation based on UAV images: Methods, errors, and strategies

无人驾驶飞行器(无人机)已成为一个有前途的确定动态的平台表型性状在田间作物的快速和有效的方式。 作物高度是一种常见的和重要的表型特征,及其与高精度的采集通常需要空间辅助(SA)的信息,比如数字地形模型在生长季节早期,数字表面模型在本赛季,地面控制点和地面实况作物高度。 SA信息的合理的选择涉及到平衡成本和作物高度采集的准确性,但这个问题还没有被系统地研究和农业行业迫切需要解决。 在 减少作物高度估计错误和不完整的数据,改进的方法是构造失踪的SA的信息。 最优结果使用完整的公司信息,R2是0.932和均方根误差(RMSE)是0.026米。 对于作物高度使用不完整的数据采集,R2值高于0.445控制和RMSE低于0.146米。 在这项研究中,系统的开发策略,以选择适当的方法获取作物高度合理的准确性同时平衡成本要求用于科学研究和农业生产。

评价:立意不错,采用无人机对4个品种的油菜的不同生长时期进行了拍摄。探究了哪个方法、策略对作物高度预测的准确性。6分。

24. Method for optimizing controlled conditions of plant growth using U-chord curvature

温度、光线和二氧化碳三个环境因素直接影响植物的光合速率。 探索这三个因素之间的关系和光合速率,优化环境,实现温室作物高效生产的关键。 一个嵌套的实验进行了测量不同环境条件下黄瓜幼苗的光合速率。 在这些数据的基础上,。 这种方法避免了过度消费的光和二氧化碳资源和促进光合速率提出了基于曲率U-chord光合速率的更有效的监管。 在不同温度条件下,可以用来构造光合速率预测模型表面的相互作用下光和二氧化碳。 表面离散后,U-chord曲率最大点的离散光响应和二氧化碳响应曲线计算。 这些点通过多项式拟合的监管边界获得目标空间,可以实现有效监管。 预测模型,温度,光和二氧化碳作为输入,精度高,调节方法是有效的。 决定系数和预测模型的均方根误差分别为0.99和0.85 µmol·m−2·年代−1,分别。 与传统最大光合速率调节方法相比,这种新方法减少了光合速率在16%以下,但保存41%的和49%的二氧化碳输入,这说明该方法提高生产效率而基本上保持最大光合速率。

评分:5分。自己数据集,主题立意可以。

25. Motion-based visual inspection of optically indiscernible defects on the example of hazelnuts

自动质量控制一直是不可或缺的一部分的加工食品和农产品。 目视检查提供了许多问题的解决方案在这种情况下,可以采用基于传感器的形式分类自动清除外来和低质量的实体从产品流。 然而,这些方法是有限的缺陷,可以通过使用传感器是可见的,通常限制系统表面缺陷出现。 另一个非视觉解决方案在于impact-acoustic方法,不受约束。 然而,这些都是强烈的有限材料吞吐量,因此不适合大规模工业应用。 在本文中,我们提出一个新颖的方法来执行基于光学检验获得运动数据。 高速摄像机捕获图像序列的测试对象在运输过程中与一个特定的槽结构表面。 轨迹数据用于测试对象进行分类根据其运动行为。 实验方法是评估的例子区分没有缺陷榛子和那些遭受虫害。 结果表明,仅仅利用运动数据,的识别率80%可以实现的榛子。 我们的方法的主要优势是,它可以集成传感器的分类系统和适用于高吞吐量的应用。

评价:机械类质量检测。

26. The e-funnel trap: Automatic monitoring of lepidoptera; a case study of tomato leaf miner

我们引入电子漏斗陷阱(e-funnel)自动监测所有鳞翅目物种与已知的信息素。 e-funnels携带一个光学计数器计数捕获的鳞翅类基于罗拉和形成自己的网络广播协议。 网络的网关收集昆虫数量的结果报告,GPS位置,记下和温度到云服务器。 我们评估了典型的漏斗陷阱诱捕效果和特异性与网络电子版本的利用性信息素吸引的种群动态Tuta absoluta(麦蛾科)。 结果表明,昆虫数量之间没有统计上的显著差异报告给服务器和手动验证数量。 然而,e-funnel网络记录84%的捕捉一个相同的网络典型的塑料陷阱。

27. Modeling soil temperature using air temperature features in diverse climatic conditions with complementary machine learning models

土壤温度(ST)是受气温(Ta)强烈影响的重要集水区性质。ST也是农业可持续发展的关

标签: 3080的不稳定性归因于电容器003网智3m连接器160v8z电容阻抗式颗粒传感器微小充油扩散硅传感器111系列ndvi传感器组

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台