问题现象
[外链图片存储失败,源站可能有防盗链机制,建议保存图片直接上传(img-6V6rbVmg-1648739802311)( M7OhZVOVpLcaStZ9q/WYsH23qGClML 7vDpc3/6hu9Op5fVX75oPHv8NTCge6Ebwn4nB9p6x60HkXvdSb7oCTqvgfUInQQS8DaRZ3mz95dfe1jHbRcGjA pkNrZ8bvmnTTQO/k9t1yxPjU7IN 6BN0vqLx AK3rtkT/Z35Cd828rZpxO7utP1eKHRfLnHHcSCOGyhNEXuRso8lQCpFNWoaqLh3 Y9 1kucvct XPcT4xZLA176LvaPd5tpYGrreI/xSRkfwaZJK7yHvqvOSyq1BBUyBFqI0 vjHkbdPyOTr3MO521uZ/sWhmVwaIJ I6RX3v2mpMc84IZ2POt4LcoxxHqJOMXsQ3OhuLB/Y7NXBUtEOA34jl3hrnH3BMnazdTwGrSY/bDF0oBYh/sjMrUnd6icBrqMQ38uHKDsxoO gSUr4SmX8j0J5Aa3BvNPsb4hdA8gFe/Aau857p/ QGCnAStxdoV2MGefJA0gubRpwOkYsJ xzogKxSnprvOJboulgfLVO5 san 0z0Dp xvrP31c4/79A0sWaGvQXBjBQv4AnJw0yvJgDyABMonElFXqQKHlIhBA5GnaBxqEM 32xgHt6Oyu8qVAt V095Jp18qd6zeTVuLpQGblwmCH4e95kXfWSB9A0tW2jTgBGR/d5lyTsZZGpLy9iWJHYrk7nsRDb9zchY8geNQg pS7SrlfdXpLBelHVzeaSDUuhsH995z9sehpIF6D6dE46W7UqD0G3m7RGigQDgiAEFKFEhgeGpm7SGl28k7G mdtA9Ee0qd1mDvfVc6SQNIopwGxNfeFYozuSPWxVCbscvtLJULbCsUZHBwvbof izyuNdiacDr 72aOxR1xm8e/e3bDZShlUnRh9xiUvUNqNu6MFwYHBosjI1O58tXCtxxtqNd YFBtjVSSXD3oBperX2yNEIaQE0CaaDLaMXFHg1gpQHvQoA7IkqsI55/OMty7xswPyNRxga6dxiW1su0dMnQ4ISb08shKDjgwn8dwek95ivaitJdKTD7Bqb7tk1MnIoeN5DRXTfQQtU04O zJA1gMdxzG fuudg0kBs7UcrnJkMTDCz3NOCImFqhWDyfK5ldKH1WexA56icGX9FWlO5KwbWxsWu9ckQZGUAaQM3SHDeUfqlC8P4m0gDSK08eoF4IiLxSYPdxRrWJyzwNVGgeQt9JtR YvoHlo r 7R8n6J97gDSAtMwDzpV9yo3KyqFGfBebQhcljZL7SqvNvgF7ThTSABIpj38K7Sr2f0Ve5ayYBvwWd4W0tdKABI7pgZY cIOZjTSwfKRLA0523OabBIY0gKSc47I6mMs3sEvdl9RB4O5jJw2Mrh8YGPJGtnKoQXXe7pQ7Hj/0zW3INOwb8N/bY88xUG771RstgtMyVMU9CC2mphGgahoIzkREGkBKyqyXR2S3mwacA3TEvLCBNGAdhZVDFneyIKHQHYburugITZ jYxpQ19zmP9aLm8QrH/SLzEm3ZKXpGxBnJwmERdIAUjAPNWIeK8pXCo72XpvcbQ/sUpr26DRwzdkJ 4YL5hhnxichGX8acCe6tgagyPDo6MsD3rzXDj3TgH9wgPgvjaizhybpZvGje6DVJU8D9qycEb1EpAFUV2HO00h23IzryvLNQ0AgQHWh Qaspq08biDnm29XtEwD6s80qc bV4hP9wd/woF7ypebVOMGjMKTvUoPEGkA2YnoGzDvDRvv9 2r1v65nuMSYii/hWFfn/LaeP8oQl//gYZpAAAANB5pAAAA3ZEGAADQHWkAAADdkQYAANAdaQAAAN2RBgAA0B1pAAAA3ZEGAADQHWkAAADdkQYAANAdaQAAAN2RBgAA0B1pAAAA3ZEGAADQHWkAAADdkQYAANAdaQAAAN2RBgAA0B1pAAAA3ZEGAADQHWkAAADdkQYAANAdaQAAAN2RBgAA0B1pAAAA3ZEGAADQXduFCxeavQwAAKCZ6BsAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHflNHDx4sV6VXrnnXc2e73qjA8HALCM dJAXRqqGur51re 1eDV/u53v5v1SmVaDwAAddT8NGBEgbRt8 KlfVPSAABgGSMNZLJSWdcDAEAdkQYyWams6wEAoI5IA5msVNb1AABQR6SBTFYq63oAAMtY8eDbh9beNL5jReUifxxp 9P0WHyZFEgDmaxU1vUsG7Mn jvzE/bjvrGZ8R0dyn8WR9p6Bp3HhamF/d0V6hjb3jlwyqlj9Op4flWz10oX5idf2rOwf6P/6fMjbd3udhueWjgQ2m7XxvpXl/ZV3KB2gQFnt9g2OnMyr 4W6j5TKPrfXXnr0O6k7ifB3SmuTnU/DC5MXJ1LZ2Fi6kQWzFbc/sD7jLb8rv/rX319wvvTbdq9NDB7Yq4z700LdMPUwke63QI9Q8a/baNX2 ty0FuiaaC8 4b27EzelDSQifMj/aVdzuazjlbK1jQObcdyJ 0jmn2YiwwEvv yDqNCIGiA4sE260gU3R47T1qNuvi od43NybeFUe2l3Y5bZJVXmmirPd1X uv37/1rReWs4jvz8B ElNn4E9fydg6l8zCxNWJjBhp4HrvwkdyJ Z2ywozDeyRoydvEfvPHX8Zaftz7mp77riSBq58aOHAh70HYm7TOWubtve ONd5 oaZk7csPsMtxTRgNgDjW63d19qVu4qhs5N6v2n1lTIOgkdyVWM1aaAyq11fH3UqKXYbMx3RzAd3AGXfQFbM5kSMz3xV NsX3IhWO9TltC7mRhTjcU59shpfDaHvu/K/5lJNq8lD2Wdmg oLGdcnVbr LJ6ulx l7g6l87CxNTZ7N1sGastDfzV2Pb3S3tWGvuG3VtQKK609xPzz3oEgqWYBlQ1Hv1JA62HNLDUhLN4 Bm1q8A1W3MaCO8G5juO9xvPSDiauKllY7jNs6o93W8 E1Pnqoh90qxKzGfi6ry2VBYmrs5m7VYaqCkNbLredqTNaPJL1gUCLwrYvK6CxXSLLvE0UP6qpHsdaaDVxLYQcecrat9mqmYGixXd9ocbs8DFgjSbKfAW4WzhPbMq9EbKW4c7wMvPxNRpN5aitrLlZ0oxdV5bKgsjMXUSqDNTSxqYkj8Zfx6VeaPVLwzL4FDgB4baRq9 qLT6T JPCaks3TTgDpkZriXG1isNeFdPAwoVLl6QBgLKH2B4O5aHklUZG1gedcUYqEZKkgaiklz1NFAe8ha4hh0YQeKMQih459xD3q7iHB ckSj2vuTtY079dj1xdQaGszh7mr2bxdW5dBYmps5m71/L0/n/bev IK7A8A2Fob9E9w2YF9o 4h9wWh5JsHhJ04A6zDX 6Nz4KwUVu5fr96b0DWQuOIpQFTOK0D8kKqpfGlnJLg2I7 WD20Inr94tJMX 8e7yMqjpvFCckm7lrf33KUxtHe8pL0NcnYFbJKakp9wnH1fn0lmYmDqRiRpHEZo3Echfq21/c9JAco2 w9AdmpQqDpAGWlANFwvCL FiQeM04EpB5LuoKg0oqfbC8IX2RHXGnn7E1blkFqbG8yukUWMaMPsVjkhBPhg8VaHi4b9eTDJY8mmgPFgmzatIA60o/YEv4pAXVwnqKskowqiGJ2Viixs1Evf1jztPiBttGntIKQ8GTFXn0lmYmDpRJ9fe8TX/qe4w9N87QN AuqPXeD8M8w20oBr6BsIDsugbaJwKg9WVG ujN0f9 gZivv413aJSpc7YJa/1JL6lFoavTyME0kDuz23nbrQb 4ppwJ19yL6VwLtk4KSBnR/0r17Y5x9SUIOlmAbEN3lWU0cRZ3hLGvq/EKhcQPqxESBcQPqgKmowVO1TUiF1Cqe90+osw+FG/IK13ecVxmPj+XG3ZeEZx8akQPK9XVl9PvsiZHJu/ZHzOFj13NQ9kfNtxNfp1F45MXe/cr1dWVUSlydS2Zh4upEJtRzfaP5PyrzVghY4aaBqLkIlQ4AMwq8fKPdQ+DrNlBmIKjNEk0Di0UaaA3q3MPBoam+gatq5gskAF8lwrGsceIa+0oT63oFKqYB8Q95i5tGN3gmoIy/C4+KV8bKxU33Gzq7UFYnNHo6rs4lszBxdaL+5tVJhHbLDV35D3LWPAFJ0kBEMvDGFV57Z5E9BKSBTFYq63oAAEuPc5nghmPWTxUUxm6cvnLDuNnVf33C/sUBecf92QLnBwiiBgeUf+lgkf0BKtJAJiuVdT0AANQRaSCTlcq6HgAA6og0kMlKZV0PAAB1RBrIZKWyrgcAgDrypYF6Vbos00C93po0AABoNeU00ERG29zgd2x8/gAAoGW1RBoAAABNRBoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHTX9tZbbzV7GQAAQDO1vffee81eBgAA0EykAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdEcaAABAd6QBAAB0RxoAAEB3pAEAAHRHGgAAQHekAQAAdNe2sLDQ7GUAAKA5en54oNmL0BJIAwAAfZEGbKQBAIC+SAM20gAAQF+kARtpAACgL9KAjTQAANAXacBGGgAA6Is0YCMNAAD0RRqwkQYAAPoiDdhIAwAAfZEGbKQBAIC+SAM20gAAQF+kARtpAACgL9KAjTQAANAXacBGGgAA6Is0YCMNAAD0RRqwkQY0MD8nr0zL29bjlTm5Iyc3NnuRULPnj8rKAdnYXrHA9Xn5zZS1uW+S9Rvk1hV1qDMg1R71bkleKtlF5dMb5OZ6lCyvo0iuR9asaGhJmZdXLsnM++bDzi65vb1VS4q8eVlenjEf3NQpn1wnKxpbMvkGbSrSgI00sKzNX5KvDsiJy74nO3rlyWdka67ZC4eU5i7L0C55vChjM7KjI7rM6X3yjcMy6/3dIQ8dluF8xQNxkjpVqfao6yV5+F75/qTyVE6+Nyrf7K69ZMQ6imw7JE/ulVsbUvLCUdlxv1xRnrl7rzxZkNtXtFbJuUtyX7+cKvk205EnZMe6RpRMtUGbjTRgIw0sa9fGZPWA3LNbtvXKmnZ5bVJ+ckxemDUbiZ9eli2JzwXRXMbZ2PFBeXjC+bNSy31iQPJj5mH363tlW04uTMiRY2YL9+VReTZfY50BKfaoknylR34yK2s3y30D8qkV8vyoPGa93fCUHOiuqaS6jrtlywaZPSuPHDZbx40FObffF3qyKHl+RLoHzZXdMSDbNpvZ6OlD5up35KU4KmtapuS7RdnUI+dF7sjLnn7pmJfTx+TpSfO1Y1OyI5dtyVQbtAXUOQ38486fdd/25u8O5P+zYpFv/8vBLXKx59/+XX1yx5b9D3z4t4EnG4k0sKwZWf5aTu5Qj9Fz8vA6eWxWPnlILu1t9vKhqsvypX45Y52Lr+2VmyflVxVa7jfPyvovyuwGmZyUu90t/tqY5AZCTXXiOsOS71Hf75E9RbNBfX6/eMWd9myDXJqWT6Yv+avDsmGfSLe8eFY+6xb1WqnvTcs3N2RY0vmEO+TZKfmy1/i5Ld/OcflxX0uUNLbIN9bJU7NmCvxxvnwRxwk9u+SNZ9w+jyxKptmgraHRacAs8PHfFUce+LXv6eg08LkHpz7xMfWJ18ya/3nsX//hf5QajHix/r/j8kcSpAH9OIe/Prk6LquavTCooihtPdKxTvY8IQ/9veQ75VSFlvvpz8t9k/5WwfJYlzx8SbaNysl86joTitijitLZYzZdkyW529+JbS/Pt38uj/SmLClysFOGZn3PqAvQsV9KBecydhYlT/RLfkLueUbO7vKVfHNCPtYvsll+/5ysbYGSdv+N+oxjTr66Uo6L/PhV2ZnLqmSqDdoaGpsGPvP4zn/6xJv/8YUzvxQxGvU711SsaP6i0d7/zYNTuXceP378hPmMWV6CacCs8E559czF/3r0179czIKTBvTjfLFJA0tCSU7PyT0brAZpVrZXarlL8oXb5JzIT98OXgBymurd8vYT7olawjoTC+9RV47J390rslfePxQcZea0sgWZ2Z+upLeOP3tfNgWKXpINXfKrDnlpRj6VUcl5efgmeUzkR6/K1wIjJIzz5pXylMjJGdnW0eySIuf2yRcOy6Zn5Gf+3GA4c7986ah8eVye7cuqZIoN2ioWlwasxvhDVYu9ceaHP3hU7HN9cR77VewbMNLARdnZfcsLP/zD+mAasPLE3MW6XF8gDbSka2P9q0v7FvZ3xzxTM7vLLvWVguKIcUJZXNi/MXY5I195sK3n5dGZk/laW5sMnB9pO9e74L+EaSzn5Cb/Clb4HAa3xa+OUeZQ7up4vs5hq3LLPTshnf1me1wa910/NsxPyk2fNy8WOK1a4jrTfJjBPcrpFi7IQui4H4gOyUvaXRrmvwsS3EaBtciiZOwHdbBNhryL4s0t6fYi+HqD/FvK+7SzKJlig7aKBvYNeCf3Vtv/8XfUWJA+Dfz2o91ObXVBGmhJ2aWB6yXJ3yanOuTkJedMIiGj+eyWKWsBZk/0d57uN5vDpEsVlSR8Zse2dw6cqlzBtrqHCfMdx7fOjLvH1vJKVXvVwPpCYWgwdnWs2q7sc9KG+dENhor0jaaOC5WbhAsj8mnjLfbLQiH0KvscN6rbIL7OhCL3KGd51A4Jl9MkuOkkeUljRTq7zEGRESvirsUj0/LtDdmUnJWvdMpPRI5My0MbJMBuj53z4+aWFDk1INvHouO+01TnZWbU+FwzKZlig1ZhfonyE1UKDU8tLHpYYuPSgG8QgHshwD8swPPu69bVhCp9A/VccNJAS6pnGpiTF6atB/Ny4az86KhcyckPxuWBDalqMc6bD621206zRSztsdrC6OUcqPYN9ngtolJnmNGaHsnVv2tBXXjz8Xh/leZZDRCRZ//RmaZvzMkcvohQi8otd8wJWZX2voY0kGCPmjsrK79oPph4W7b624TT90rfMfOBfTqevKTXJR4eG+FcO/fOj7MoKfL9LtlzKapFdPOWd+rc3JLOtaGo8Xr2lXvv7DyLkik2aKtokVGE0cJp4PVXb/34bVG3DFvxYhH5gDTQQhJlYYvXwCTg9oXatuyVh/fJZ1M2rGpjGdPeB87gIxKM0YhO9kZkmgamgegzdZ9CxHl/uPk3lnm3HAk8E1yL6BRVo8ott33qFnlZt/5pIMkeNS/fycmjoZvffnNMNt3r3NbvNAnJS4q8MCi9I+bJpTqufu6yPNhrjqsXpeXOoqRzRdx/m9z1WRnqk0eL5mOvPW5uSSnJ5tvkeQmO6n9+UDaPWI+8vvosSqbZoK1hEWkgfhhgkHU7wGce33nn68cjxg1Ei+0beH1dxJ2KNSMNtKR69g2UnDt95W15qSgvTppfyEozllRgXvgfcs7jleat+lJZLyxMOQXs6wUzu1Z1dARPwRucBmSq4jJHLUnFlwQvN0h5NdUarKEGgZfW0sNZueWOuaxb/zSQbI/ybtIzGtq7vyj3tMvzZ+WFyzJckKFBX3dx8pJGS3OwV4asxu+OXrlns3nf3fOTsqZg9k4/7vXqZ1TSu6FOZG23bOo179U8NyHv5uVrRiUT5b76ppd8bUy6B6ymN2fOTHC7yLmzcv59Gd4lQyPlXv2MSqbYoC2hnn0D1rWA1yp3DJgzDZR7TN44YzXwa6JKOpV4aeBOOX787S2BKwW+Ow4WizTQkjIcN+CeTBjJ/aXRRGN5nJNpKw2Iv0c9eqmiGr8IBaV9beC4gXRpwB4z2Nd3aqJCp01fYVgGh7q8Cq0AFFjy3DF/v0Ktlwwqt9y/GJS7Rhp1pcAvZo8yzrCH71cmpLNnoxOra8E/lCx5SZmTEwXZo8wbaE8a+JR17dy3FlmUFHnhsNy3rzwboB2DLg2YaSwwtU5zS85OyoP3lucNtCcNvOuSdeXev59kUTLFBo2U8Bhiq2EIjk/90oDZVXCrfb1frIb8b//gP3G3+xLeUAYPRo4AKA82dNJA6ZYHzFY/lAZ+Xc8BBKSBlpTpPQVep1/kiKQg+0x3Srqt9uyafyh+xTTgNX7l7nSzmZQpZWCdBNJAy/UNVF87deuYIan3xf7OvJcMvJ6DkvOSa86KSN3TQNy4Afe6csRNdFKfewri96j5OeP027Si3bzlzBlKFjXgMXlJo9ycU1TaV5TX4sUF+WwDShqt3ZxS0h3H9+yryrxArVHy3Tm5bj24ud2cMsjeT7aOykS+ESVTbNA4qfoja1CnNGDdavhHtd9enVqgkmppwGLdgLDiXS9nKK8y/+vW1+vSPUAaaEnZpgF3phq1azFmSY7nxg9I9C1z8e3lNbNToW9s6uhd3falAfu82bwqL/FNcpZqHDcQWrtVFf6r2D/ePTAhfX3bJiQw5DC7NODMORh11uXcYdgrv/+5f96YanWmknyPsu9c//pz8uTmupV01jFqHHsDSjqTFiSZZa+5Jd3NlOQ0IIuSyTeo35JIAxVaZTMQfLQUuHDgjTaYv2jeJVg1DdiVXJRPeB0PwdmHqmWOREgDLaPG0fg1sb/AKb6WTnuWO+7vBg+x2lGr8FjXQF4Kw4ODgfLD1u15wwXj+fL9iv6xk/YYyUrPL/ZzTjluINjzHyl4IcPr57SvhmSfBrw75cIdAPapW8UpX+qaBqrvUe7UdeEB57WXdAerh+8LaExJe7x9kgk8mlvS6SVKkhuyKJlmg/r4v5ItmQaCkwcEpxNWpx76mASvFMSOGxD3YoGRM8p3K5RHEZoTEr9lPi+vLzYQkAY05PbrRsxrVkmxlr6BwJBD9Xp55OwF9ovdl/gvrkeO16uD9DMjVZlZyAox7sUCqx+ioF5nySoNuDPsBlsvd4C3Ot9+8jqTSrxHOdFEme538SWdMWtRU+E2oKT3SwHlqXlbs6Q7CDE8t3FjSibfoEH+Ybmtlwb8AwMtgckBPxcz1i/BuAF17kJ7LMLllUbzf7PvjYIXF2pAGmhRRqOyW456jV+yafKCdcjBUdm5W1YpX77ymK/d8vITET/YGm3ZpAHzyDI9NjOeO+ZbgPLF/sg7CQPjCpUC6pyGUb07Vn+GM27AHFVgrVH9RxGKdwea/wflfjEidw3GjhiNrfPNovzgOdkwIFvXOYWT71Fvzkp7R/nnbQwXDsuWfeYM9oFfO0xe0ji/nG0XdTHnLslXNsuZ2VC3RBYl52V2XjqU5blekj0D5u9Bbzwkxb0tU9L6SG/1b83T90vfUfPHmS5N+U7iMyqZdIMmEOjMCxxzrC9dV3ExN+424BeNP/P4zs/JxRrG+lUYJFh5euPFIA20IHeAfbn/uTi2/dDAqYmUQ+vdA/3GPvNE5xbjRGLKvCXpijUY+PRzsjF5RK89DQS72e0765qUBso9ATHXC6zji6hXJZxTfPuIo3wU5vPTo8WjvRs73KK+6OAPQ/ZmLSxitES183jnDjTrF283dMqlY3Lisjmc++TPzR84Tl2nOzNPecxBmj3KPBc8Jjv7ZF2nyIxMTMj5krlsR84GLzAnL2lPdbBxl/RZ6eTyuBy37gzcckjG9vp+ejiTktbqX94sW3utdZ+U02fNqzMbd8uJJ/wTQje3pHXH6Z7LsrVPcivlnZKcHpffzJrN9k9HZUsu85IpNmj1fd6a/XOq4sjlRPOGVZF9GlgaSAMtxjm/jBoWEPNf0ebl1KB853D5fiRTzjy3e2SvpGtV69M3UNaUNGA33uU5lIJL7p9x2X+IKd/X4K1dxekII9OAXfnU1vGe/EShxlOZBL36p/fJw8oWvyMvTx0t/1Bv2jof75EHrZP+y/ZIujR7lHM6qDxzz275TiFiYZKXlEuyfrPVCLnWbpYHB+WB7oaUnJX7euTpUvmJjnXyjYI81Cc3t1RJkTP3ypeOKX8bAfF+GdobMcVIFiVTbNAq/BOWWPzfXH/HXo1IAzbSQAtxzqTjOgCcboN04+nm5mR+Rl4Tub3TuSko/aLVlgaClL5033y9jRxF6P8kA/ztdLVZEFTOVgu+xFpm8fUKhPse6mxe5mbklXm5PefcgbYYxs5j3x4WeDLRHmXds/fatLR3ya3tcnPM2yQvab37XEnm2mVNZ5UVzKLku3Pyrrvu7e2tW/L6vFn4lZKsWWeWXNHYkqk2aDR7KG5EX1qgx7HWbF1GGrCRBlpH1Z/2cctVOuFempo7irDuaxPqGxjtyg9MB9v+xc9SDCxfmSdmH9KAjTQAANAXacBGGgAA6Is0YCMNAAD0RRqwkQYAAPoiDdhIAwAAfZEGbKQBAIC+SAM20gAAQF+kARtpAACgL9KAjTQAANAXacBGGgAA6Is0YCMNAAD0RRqwkQYAAPoiDdhIAwAAfZEGbG3vvfdes5cBAAA00/8DLE3zgHKPsscAAAAASUVORK5CYII=)]
解决办法
1.使用BigDecimal来进行运算
Java在java.math包中提供的API类BigDecimal,用来对超过16位有效位的数进行精确的运算。双精度浮点型变量double可以处理16位有效数,但在实际应用中,可能需要对更大或者更小的数进行运算和处理。一般情况下,对于那些不需要准确计算精度的数字,我们可以直接使用Float和Double处理,但是Double.valueOf(String) 和Float.valueOf(String)会丢失精度。所以开发中,如果我们需要精确计算的结果,则必须使用BigDecimal类来操作。
2.创建BigDecimal类型对象时将Double类型的数据转换为字符串
例如:
BigDecimal sum = new BigDecimal("0.0");
可以通过BigDecimal类的方法进行各种运算
sum = sum.add(new BigDecimal("12.1"));
-
add(BigDecimal)
BigDecimal对象中的值相加,返回BigDecimal对象
-
subtract(BigDecimal)
BigDecimal对象中的值相减,返回BigDecimal对象
-
multiply(BigDecimal)
BigDecimal对象中的值相乘,返回BigDecimal对象
-
divide(BigDecimal)
BigDecimal对象中的值相除,返回BigDecimal对象
-
toString()
将BigDecimal对象中的值转换成字符串
-
doubleValue()
将BigDecimal对象中的值转换成双精度数
-
floatValue()
将BigDecimal对象中的值转换成单精度数
-
longValue()
将BigDecimal对象中的值转换成长整数
-
intValue()
将BigDecimal对象中的值转换成整数