资讯详情

传感器与检测技术基础知识(4)—— 电阻式传感器

0.1 什么是传感器

国家标准GB 7665-87对传感器的定义是:能感觉到规定的测量,并按一定规律转换为可用输出信号的装置或装置, 通常由敏感元件和转换元件组成

0.2 敏感元件是什么?

指传感器中能够直接感觉或响应测量(输入量)的部分

0.3 什么是转换元件

是指传感器中能够将敏感元件的感觉或响应转换为适合传输和(或)测量的电信号的部分。


1 电阻传感器-能控传感器

1.1 什么是电阻传感器?

传感器将被测对象的变化转换为电阻变化

1.2 如何定义电阻?

对于具有一定长度和截面积的金属丝,其值R可用下表示: R = ρ l A R=\rho{\frac {l}{A}} R=ρAl L——电阻丝长度;

A——电阻丝截面积;

ρ——电阻丝的电阻率, 这取决于导体材料的性质

1.3 电阻传感器的类型

1.3.1 电位器

这所高中已经谈到了基本内容,所以这里不详细,大致分为直线位移变阻器、角位移变阻器、非线性变阻器(左右)

在这里插入图片描述

1.3.1.1 对于直线位移型

首先,根据高中知识,我们可以知道它的变化是线性的,但这是一个类似的结果,如下图所示:

当滑臂触点从一圈导线移动到下一圈时,电阻值的变化是台阶形的,这限制了电位器的分辨率。实际上,绕线之间的密度为25圈/mm,对于直线移动装置,分辨率最小 40 μ m 40\mu m 40μm ,直径为 5 c m 5cm 5cm 对于单线圈旋转电位器,其最佳角分辨率约为 0.1 ° 0.1° 0.1°

1.3.1.2 应用举例
  1. 自动检测落料重量

  2. 气体储量检测

1.3.1.3 变阻传感器的性能参数
  1. 线性性
  2. 分辨率
  3. 整个电阻值的偏差
  4. 移动或旋转角度范围
  5. 电阻温度系数
  6. 寿命
1.3.1.4 电位计式传感器的优点
  1. 结构简单,尺寸小,重量轻,价格低,性能稳定
  2. 受环境因素(如温湿度、电场干扰等)影响小
  3. 可以实现输入输出间任意函数关系
  4. 输出信号大,一般不需要放大
1.3.1.5 电位计式传感器的缺点
  1. 存在电刷与线圈或电阻膜之间的摩擦,因此需要较大的输入能量;
  2. 由于磨损不仅影响使用寿命和降低可靠性,而且会降低精度,所以分辨率较低
  3. 动态响应较差,适合于测量变化较缓慢的量

1.3.2 电阻应变片式

1856 年英国物理学家 W. Tomson 发现了金属材料的应变效应,即一根金属导线在其拉长时电阻增大,在受压缩短时电阻减小。这个规律被称为金属材料的电阻应变效应。

1.3.2.1 电阻应变效应

导体或半导体材料在外界力的作用下产生机械变形时,其电阻值响应发生变化

1.3.2.2 应变片工作原理

对于长度、截面积一定的金属丝,其阻值 R R R 可用下式表示: R = ρ l A R=\rho {\frac{l}{A}} R=ρAl​ 根据上述电阻应变效应,金属应变片电阻 R R R 为 R = ρ l / A R =\rho l/A R=ρl/A, 其中任何一个参数变化均会引起电阻变化,对公式进行微分可得 d R = ρ A d l − ρ l A 2 d A + l A d p dR={\frac{\rho}{A}dl}-{\frac{\rho l}{A^2}dA}+{\frac{l}{A}dp} dR=Aρ​dl−A2ρl​dA+Al​dp 带入 R = ρ l / A R =\rho l/A R=ρl/A ,得: d R = R d l l − d A A R + d ρ ρ R dR=R{\frac{dl}{l}}-{\frac{dA}{A}R}+{\frac{d\rho}{\rho}R} dR=Rldl​−AdA​R+ρdρ​R 整理得: d R R = d l l − d A A + d ρ ρ {\frac {dR}{R}}={\frac{dl}{l}}-{\frac{dA}{A}}+{\frac{d\rho}{\rho}} RdR​=ldl​−AdA​+ρdρ​ 圆截面金属丝的面积为 A = π r 2 A= \pi r^2 A=πr2 ,则变为: d R R = d l l − 2 d r r + d ρ ρ {\frac {dR}{R}}={\frac{dl}{l}}-{\frac{2dr}{r}}+{\frac{d\rho}{\rho}} RdR​=ldl​−r2dr​+ρdρ​ 子项分别定义: 纵 向 应 变 : d l l = ε 横 向 应 变 : d r r = − μ d l l = − μ ε ( 为 电 阻 丝 径 向 相 对 变 化 , 当 电 阻 丝 沿 轴 向 伸 长 时 , 必 沿 径 向 缩 小 ) 纵向应变:{\frac {dl}{l}}=\varepsilon \\横向应变:{\frac {dr}{r}}=-\mu{\frac {dl}{l}}=-\mu\varepsilon (为电阻丝径向相对变化,当电阻丝沿轴向伸长时,必沿径向缩小) 纵向应变:ldl​=ε横向应变:rdr​=−μldl​=−με(为电阻丝径向相对变化,当电阻丝沿轴向伸长时,必沿径向缩小) 其中, μ μ μ 为材料的泊松比,对于一般金属而言, μ=0.3~0.5 。

电阻率相对变化率: d ρ ρ = λ ε E {\frac{d\rho}{\rho}}=\lambda\varepsilon\Epsilon ρdρ​=λεE

其中, λ \lambda λ 为材料的纵向压阻系数, E \Epsilon E 为材料的弹性模量。

电阻丝电阻率的相对变化与其轴向所受正应力 σ \sigma σ 有关。一般金属导体的入很小,可以忽略不计,但对千某些半导体来说,情形则大不一样。根据上述定义,可以表示为: d R R = ε + 2 μ ε + λ E ε {\frac {dR}{R}}=\varepsilon+2\mu\varepsilon+\lambda\Epsilon\varepsilon RdR​=ε+2με+λEε 定义 S 0 = 1 + 2 μ + λ E ε S_0=1+2\mu+\lambda\Epsilon\varepsilon S0​=1+2μ+λEε 为电阻应变片的灵敏度系数。该值对于特定的材料为一个常数,表明电阻值相对变化与应变成正比,因此通过测量应变 ε \varepsilon ε 便可测量电阻变化,这就是应变片的工作原理。

灵敏度系数 S 0 S_0 S0​ 中 ( 1 + 2 μ ) ε (1+2μ)\varepsilon (1+2μ)ε 项是由几何尺寸变化引起的, λ E ε \lambda E\varepsilon λEε 项是由于电阻率变化引起的。

  • 对于金属丝应变片 d R R ≈ ε + 2 μ ε = ( 1 + 2 μ ) ε {\frac {dR}{R}}≈\varepsilon+2\mu\varepsilon=(1+2\mu)\varepsilon RdR​≈ε+2με=(1+2μ)ε

  • 对于半导体 S 0 ≈ λ E S_0≈\lambda \Epsilon S0​≈λE

1.3.2.3 分类
  1. 金属应变片电阻的相对变化与轴向应变e 成正比。对千同一电阻材料,灵敏度系数为常数。一般用于制造金属丝电阻应变片的金属丝其灵敏度系数多在1.7~3.6 之间。

    常用金属电阻应变片,除电阻丝应变片外,还有箔式应变片和薄膜应变片。

    • 主要结构

    • 分类

  2. 半导体应变片是利用半导体材料的压阻效应而制成的一种纯电阻性元件。半导体应变片的工作原理是基千半导体材料的压阻效应的。采用集成电路制程的扩散工艺可制成扩散性半导体应变片

    • 分类

      半导体电阻可以分为体型、薄膜型、扩散性三种。如在膜片压力传感器中,采用硅来代替金属材料制成膜片,通过在膜片中淀积杂质来实现应变片效应,从而可在所需的位置上形成内在的应变片

    • 优点

      灵敏度高(比金属丝应变片灵敏度大50~70 倍),体积小。

    • 缺点

      温度稳定性和可重复性不如金属应变片,存在非线性及安装困难等

1.3.2.4 应变片的作用

1.3.2.5 应变片测量电路

1.3.2.6 应变片应用实例
  1. 柱力式传感器
  2. 梁力式传感器
  3. 应变式压力传感器
  4. 应变式加速度传感器

1.3.3 敏感电阻式

1.3.3.1 热电阻

标签: 负温度系数热敏电阻式水传感器弹出传感器不可用3050al旋转传感器氯化锂电阻湿度计使用组合传感器微小充油扩散硅传感器t直线位移传感器

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台