资讯详情

车载摄像头技术、市场、发展前景

战国初期,中国学者墨子(公元前468-公元前376年)和弟子们完成了世界上第一个小孔成像实验,并记录在《墨经》中:景到,中午有端,景长。说在端,景,光的人,如果他们开枪,下者的人也很高;高的人也在下面。足遮下光,所以景在上面;第一个屏蔽上光,所以景在下面。远近有端,与光有关,故景库也有。

本文解释了孔成倒像的原因,指出了光沿直线传播的性质。这是对光直线传播的第一次科学解释。

直到公元前350年,古希腊学者亚里士多德提出了光学法则,西方人了解了小孔成像的光学原理。

Image

15世纪末,人们根据小孔成像原理制作暗箱(Camera Obscure),这本质上是相机的原型。意大利人达文西在他的作品中描述了这个暗箱,描述了人们使用这个工具素描和绘画。

1553年,意大利玻尔塔发表了《自然魔术》一书,详细介绍了暗箱的使用情况。使用这个工具,只要图像反射在纸上,用铅笔描绘轮廓,然后着色,就可以完成一幅完全符合真实比例的真实画像。

1822年,法国涅普斯在感光材料上制作了世界上第一张照片,但成像不是很清晰,曝光需要8个小时。1826年,他通过暗箱拍摄了涂有感光沥青的锡基底版最早的照片。

1838年,法国物理学家达盖尔发明盖尔的银版照相法,是利用镀有碘化银的钢板在暗箱里曝光,然后以水银蒸汽显影,再以普通食盐定影。此法得到的实际上是一个金属负像,但十分清晰而且可以永久保存。随后,达盖尔根据此方法制成了世界上第一台照相机,曝光时间需要20~30分钟。

1839年8月19日,法国政府宣布放弃银版摄影专利,并公之于众。人们通常把这一天作为摄影的开始。

1866年,德国化学家肖特和光学家阿具在蔡司发明钡冕光学玻璃,生产正光摄影镜头,使摄影镜头的设计和制造迅速发展。

随着光敏材料的发展,1871年出现了溴化银光敏材料的干版,1884年出现了硝酸纤维作为基板的胶卷。

1888年,柯达生产了一种柔软的光敏材料——柔软、卷曲的胶卷。这是光敏材料的飞跃。同年,柯达发明了世界上第一台安装胶卷的便携式盒式相机。Kodak No.1是柯达公司推出的家用相机,其口号是按快门,剩下的由我完成,可以说是消费相机的始祖。

1969年,CCD芯片作为相机感光材料应用于美国阿波罗登月飞船上的相机,为相机感光材料电子化奠定了技术基础。

经过多年的研究,索尼生产了世界上第一款CCD电子传感器作为感光材料的相机,为电子传感器代替胶片奠定了基础。然后,松下,Copal、一些电子芯片制造商在美国和欧洲投资CCD芯片的技术研发为数码相机的发展奠定了技术基础。

1987年,采用CMOS作为感光材料的芯片相机诞生于卡西欧公司。

回顾一下的发展历程:

聚集光线,将景物投射到成像介质表面,有的是单镜头,有的成像效果好,需要多层玻璃镜头。

人眼看到的风景是可见光波段,图像传感器可识别的光波段大于人眼。因此,添加过滤色片过滤掉多余的光波段,使图像传感器能够拍摄多人眼看到的实际场景。

即成像介质将镜头投射到表面的图像(光信号)转换为电信号。

将图像传感器的电信号传输到后端,车载摄像头的线路基板将有更多的电路,并行摄像头信号需要转换为串行传输,以增强抗干扰能力。

相机模块的工作原理是镜头聚集光线,然后通过IR过滤器过滤掉不必要的红外光,模拟信号进入传感器COMS芯片,通过AD这里有一些数字输出ISP图像处理芯片在摄像头这边,将处理后的信号传输给主机,有的不放置ISP芯片由主机内置ISP图像处理芯片,这样,相机端的散热会好得多,辐射也会小。

车载摄像头的结构如上图所示。如果放置在车身外,需要形成一个完整的摄像头。如果是在车内DVR,不考虑防水,可以组装成上面的摄像头模块。

上图是汽车上常用的相机模块的解剖。除了最外层的铝壳、密封圈和镜头外,中间还设计了几层板,通常包括传感器sensor图像处理器的小板也包括串行器的板。串行器的原因是通常是相机传感器或ISP图像数据输出总线是MIPI CSI其特点是高速穿行,但传输总线距离较短,否则信号的完整性无法保证。

因此,我们需要将车辆转换为例GMSL等适合在车上长距离传输的高速总线标准进行传输,所以相机模组内部通常会通过串行板进行总线的转换。另外同轴电缆既可以用来为模组提供电源,也可以传输图像数据。

CCD(Charge Coupled Device )感光耦合组件 CCD主要材料为硅晶半导体,基本原理相似 CASIO 通过光电效应,计算器上的太阳能电池从感光组件表面感应光源,从而转化为存储电荷的能力。简单地说,当 CCD 当快门打开表面时,当镜头进来的光线照射时,光的能量会转化为电荷。光线越强,电荷越多,这些电荷就成为判断光强度的基础。CCD 在组件上安排信道线,将这些电荷传输到放大解码原件,以恢复所有电荷CCD上感光组件产生的信号构成了一幅完整的画面。

CMOS(Complementary Metal-Oxide Semiconductor)互补氧化金属半导体 CMOS材料主要是由硅和锗制成的半导体CMOS上共存着带N(带–电)和P(带 电)级半导体,这两种互补效应产生的电流可以被芯片记录并解释为图像。

CMOS与CCD最大的区别是放大器的位置和数量 比较 CCD 和 CMOS 放大器的位置和数量是最大的区别。

CCD 每次曝光,自快门关闭或内部频率自动断线(电子快门)后,进行像素转移处理,每行每个像素(pixel)按顺序将电荷信号传输到缓冲器(电荷储存器)中,由底线引导输出 CCD放大旁边的放大器,然后串联 ADC(模拟数字数据转换器) 输出。

,光电信号可以直接放大 BUS 通路移动至 ADC 中转换成数字数据。由于结构上的差异,CCD与CMOS性能不同。CCD其特点是在传输过程中充分保持信号不失真(独家通道设计),并通过每个像素集合到单个放大器上进行统一处理,以保持数据的完整性。而CMOS工艺相对简单,没有专属通道设计,所以在整合各种像素数据之前,必须先放大。

由于 CMOS 每个像素都包含放大器和A/D转换电路,过多的额外设备压缩单像素感光区的表面积,因此在 在相同的像素下,相同大小的感光器尺寸,CMOS亮度会低于CCD。

由于第一点的感觉亮度差异 CMOS 每个像素的结构比CCD复杂,其感光开口不如CCD大,尺寸相对相同CCD与CMOS感光器时,CCD传感器的分辨率通常优于CMOS。但是,如果跳出尺寸限制,目前的行业CMOS 设计感光原件可达1400万像素/全画幅,CMOS 亮率技术的优势可以克服制造大尺寸感光原件的困难,特别是全画幅24mm-by-36mm 这个尺寸。

由于CMOS每个感光二极管都配有一个ADC放大器,如果按百万像素计算,需要百万以上ADC放大器,虽然是统一制造下的产品,但是每个放大器或多或少都有些微的差异存在,很难达到放大同步的效果,对比单一个放大器的CCD,CMOS最终计算出更多的噪音。

CMOS图像电荷的驱动方式是主动的,感光二极管产生的电荷会直接由旁边的晶体管放大输出;但是CCD然而,它是被动的,每个像素中的电荷必须增加电压才能移动到传输通道。这通常需要12伏特(V)因此,上述水平CCD还必须有更精确的电源线设计和耐压强度,高驱动电压CCD电量远高于CMOS。

CMOS 半导体工业常用的应用CMOS工艺可一次将所有周边设施整合到单芯片中,节省加工芯片所需的成本和良率损失;相对而言 CCD 以电荷传输的方式输出信息,如果信道中有像素故障,则必须另辟传输信道(Fail),会导致一整排信号堵塞,无法传输,所以CCD的良率比CMOS低,加上另一个传输通道和外部通道 ADC 等周边,CCD制造成本相对高于CMOS。

IPA(Indiviual Pixel Addressing)常用于数字变焦放大,CMOS 必须依赖x,y图片定位放大处理,否则由于个别像素放大器的误差,很容易产生图片不均匀的问题。在生产制造设备上,CCD只有专门定制的设备机台才能制造,因此生产高像素CCD 日本和美国不能生产组件,CMOS 一般内存或处理器设备机台可用于生产。综上所述,CCD与CMOS其特点决定了CMS更适用于手机这类便携设备中使用,车载摄像头也是使用COMS的传感器,而CCD则更适用于单反相机这类专业设备上使用。

图像传感器的功能是光电转换。关键的参数有像素、单像素尺寸、芯片尺寸、功耗。技术工艺上有前照式(FSI)、背照式(BSI)、堆栈式(Stack)等。以下简单介绍。

图像传感器从外观看分感光区域(Pixel Array),绑线Pad,内层电路和基板。感光区域是单像素阵列,由多个单像素点组成。每个像素获取的光信号汇集在一起时组成完整的画面。

CMOS芯片由微透镜层、滤色片层、线路层、感光元件层、基板层组成。

CMOS芯片剖面图

由于光线进入各个单像素的角度不一样,因此在每个单像素上表面增加了一个微透镜修正光线角度,使光线垂直进入感光元件表面。这就是芯片CRA的概念,需要与镜头的CRA保持在一点的偏差范围内。

电路架构上,我们加入图像传感器是一个把光信号转为电信号的暗盒,那么暗盒外部通常包含有电源、数据、时钟、通讯、控制和同步等几部分电路。可以简单理解为感光区域(Pixel Array)将光信号转换为电信号后,由暗盒中的逻辑电路将电信号进行处理和一定的编码后通过数据接口将电信号输出。

指感光区域内单像素点的数量,比如5Maga pixel,8M,13M,16M,20M,像素越多,拍摄画面幅面就越大,可拍摄的画面的细节就越多。

指感光区域对角线距离,通常以英制单位表示,比如1/4inch,1/3inch,1/2.3inch等。芯片尺寸越大,材料成本越高。

指单个感光元件的长宽尺寸,也称单像素的开口尺寸,比如1.12微米,1.34微米,1.5微米等。开口尺寸越大,单位时间内进入的光能量就越大,芯片整体性能就相对较高,最终拍摄画面的整体画质相对较优秀。单像素尺寸是图像传感器一个相当关键的参数。

传统的CMOS图像传感器是前照式结构的,自上而下分别是透镜层、滤色片层、线路层、感光元件层。采取这个结构时,光线到达感光元件层时必须经过线路层的开口,这里易造成光线损失。

而背照式把感光元件层换到线路层的上面,感光层只保留了感光元件的部分逻辑电路,这样使光线更加直接的进入感光元件层,减少了光线损失,比如光线反射等。因此在同一单位时间内,单像素能获取的光能量更大,对画质有明显的提升。不过该结构的芯片生产工艺难度加大,良率下降,成本相对高一点。

堆栈式是在背照式上的一种改良,是将所有的线路层挪到感光元件的底层,使开口面积得以最大化,同时缩小了芯片的整体面积。对产品小型化有帮助。另外,感光元件周边的逻辑电路移到底部之后,理论上看逻辑电路对感光元件产生的效果影响就更小,电路噪声抑制得以优化,整体效果应该更优。业内的朋友应该了解相同像素的堆栈式芯片的物理尺寸是比背照式芯片的要小的。

但堆栈式的生产工艺更大,良率更低,成本更高。索尼的IMX214(堆栈式)和IMX135(背照式)或许很能说明上述问题。

前一章我们谈到,图像处理器最为关键的参数是单像素尺寸,单像素尺寸越大则进光量越大,图像质量越优秀。因此我们可以简单的认为:决定图像传感器性能的最大的因素是单像素点的有效进光量,它决定每个像素点在单位时间内能捕获多少光线能量。假如单像素面积越大,则在相同时间里可以承载更多光线能量,便可以更明显的提升画质,

数码相机和手机所采用的图像传感器单像素尺寸是不一样的,数码相机的更大,英寸拍摄效果更加出色。但单像素尺寸增大,相同像素的图像传感器面积则大幅增加,摄像头模组体积增大,模组高度增加,功耗大幅增加,发热量增加等,这样的变化在数码相机固然还可以接受,但放在追求便携的手机上面,无疑是不太合适的。

以HTC ONE为例,采用了单像素尺寸2微米的图像传感器,换来相当棒的画质效果,夜景拍摄尤为出色。但正因为单像素尺寸增加之后,手机摄像头受限于体积增加、发热量增加等因素迫不得已只能做到400万像素,令人难以接受。而苹果iPhone比较折中的选择了1.5微米单像素尺寸,虽然比较折中,但其只有800万的像素令人诟病。而在新一代iPhone6时为确保较好的拍摄效果继续选择1.5微米芯片,换来了前所未有的结构和外观牺牲,突出的摄像头设计堪称史上最丑苹果摄像头!除了增大单像素尺寸可以增加进光量之外,就没有别的方法了吗?

其实不然,ISOCELL技术在相同的像素尺寸情况下可做到优化,可有效提升进光量

据三星公司发布的信息看,ISOCELL技术要解决的第一个问题就是增大单个像素的收缩能力,通过对成像动态范围的对比,改善光线强度最轻和最暗部分的图像质量。第二个问题就是随着像素变得越来越小,会发生彼此之间抗干扰能力的减弱,造成错误的感应光源颜色和数量,这个现象被称为串扰。光电二极管的微小探测器会将光能部分转化成为细微的电流,而这些电流有时会出现在不该出现的地方,造成对图像的影响。

发生串扰的原因有很多,而其中最大的可能性是光串扰。当一个像素接收到更多的光线,超过了自己的承受范围,那么电子就会发生串扰,而这完全是建立在错误的光二极管在信号传输过程中的电流漏出

比如单像素在捕获绿色光线时,一些光子很有可能泄露成蓝色或红色,导致在即使没有蓝色和红色的场景下出现电流,这样就会在原始图像上形成轻微的变形,从而产生噪点。这类问题虽然是不可避免的,但是通过ISOCELL技术可以尽量减小影响。

ISOCELL本质上是在现有BSI技术上的一种进化,可以解决上面提到的串流问题。简单地说,便是通过在形成隔离像素与相邻像素之间形成物理屏障,缩小它们的间隔区,避免BSI传感器中单个像素间形成的干扰问题,让像素能够获得吸收更多光子,获得更好的照片效果。

从官方数据来看,ISOCELL相比BSI能够将每种颜色的像素孤立起来,提高传感器捕光能力,可以预计减少30%的像素串扰。但是这并不意味着最终的成像质量同样会提高30%,但是却可以更好的提升清晰度和色彩表现,让图像看起来更丰富。三星搭载了ISOCELL技术的图像传感器,画质和色彩表现有目共睹。

摄像头对于模组工程是那么的熟悉,有多少人又真正了解摄像头从硬件到软件的工作流程。我们了解摄像头的工作原理,对于开展工作,辅助的解决遇到的一些问题,很有帮助。下面我们析摄像头从寄存器角度是怎么工作的。如何阅读摄像头规格书(针对驱动调节时用到关键参数,以格科GT2005为例)。

每个摄像头的sensor都有Datasheet规格书,也就是一个器件所有的说明,精确到器件每一个细节,软件关心的寄存器、硬件关心的电气特性、封装等等。

camera的总体示意图如下:控制部分为摄像头上电、IIC控制接口,数据输出为摄像头拍摄的图传到主控芯片,所有要有data、行场同步和时钟号。GT2005/GT2015是CMOS接口的图像传感器芯片,可以感知外部的视觉信号并将其转换为数字信号并输出。

我们需要通过MCLK给摄像头提供时钟,RESET是复位线,PWDN在摄像头工作时应该始终为低。PCLK是像素时钟,HREF是行参考信号,VSYNC是场同步信号。一旦给摄像头提供了时钟,并且复位摄像头,摄像头就开始工作了,通过HREF,VSYNC和PCLK同步传输数字图像信号。数据是通过D0~D7这八根数据线并行送出的。

GT2005阵列大小为 1268 列、1248 行,有效像素为 1616 列, 1216 行。也就是说摄像头为1600X1200的时候,像素点要多于这个,去除边缘一部分,保证图像质量吧。

这个不用说了,摄像头寄存器初始化的数据都从这里传输的,所有的IIC器件都一样的工作,来张图吧,后面做详细分析;

下面这一部分在调试驱动的过程中比较重要了:

电子元件工作都得要个时钟吧,摄像头要工作,这个就是我们所要的时钟,在主控制芯片提供,这个时钟一定要有,要不然摄像头不会工作的。

这个要接规格书上来,注间PWDN、RESETB这两个脚,不同的摄像头不太一样,这个图是上电时序,上电时参考一下,知道在那里看就行;

摄像头得到的数据要传出来吧,要有数据,当然数据出来要有时钟和同步信号了,看下它的时序,和LCD显示的时序一样,道理是一样的:

分辨率、YUV顺序、X轴、Y轴镜相、翻转以上工作完成后,也许还有一些问题,分辨率太小;YUV顺序不对图像不对;XY图像方向。这些工作完成后,如果还有什么细节的问题,如果你想花时间,看规格书里面的寄存器可以解决的,如果不想看,找模组厂的FAE,他们专业的,很快会帮你搞定。

一个摄像头效果好不好,70%的光学参数是由镜头决定的,虽然从单价上来说没有COMS芯片贵,但是性能上是非常重要的。

针对镜头相关的参数讲解一波,这个其实对于买手机,买单反的同学来说还是非常有用的。

我们这里以一款车载DVR的隐藏式宽FOV角度的镜头为例子。

镜筒的材质一般都是金属,但是也有塑胶的,金属的镜筒从质量,耐高低温等各项指标都会更好,但是也有缺点,金属的套筒在螺丝扭的时候会产生金属机械粉末,会有掉入到COMS感光区域的风险,而且金属的套筒硬度比较硬,底板打螺丝的时候容易导致底板有COMS芯片的PCBA变形,从而导致成像后的解析度发生变化。

以G为缩写,面型多为球面,玻璃研磨加工;

以P为缩写,面型多为非球面,注塑加工。

手机摄像头为追求轻薄短小,多为1-4pcs的玻璃镜片或塑胶镜片组成的定焦镜头。如2P,3P,3G,1G1P,2G2P等。

镜头的材质车载里面一般都是使用的是玻璃,玻璃的耐高温,耐擦挂性能都非常好,表面硬度玻璃会好于塑胶,当然玻璃也有缺点,价格贵,而且摄像头整体的厚度变厚了,但是在车载里面这些相对于性能要求而言,都必须要使用到玻璃镜头,所以这里可以看到6G,就是使用6个玻璃片。

是指一个光学系统从起像方主面到焦点间的距离, 它反映了一个光学系统对物体聚焦的能力。

镜头最后一镜片面到成像面的距离

这里的如上图所示是 5.85mm;

镜筒端(前/后)到成像面的距离

这里如上图所示是 5.08mm±0.2mm

光学总长是指从系统第一个镜片表面到像面的距离; 而镜头总长是指最前端表面(一般指Barrel表面)到像面(例如Sensor表面)的距离.一般来说, 镜头太长或太短其设计都会变得困难, 制造时对工艺要求较高,这个镜头的总长度是22.7mm±0.3mm。

一个光学系统成像亮度指标, 一般简称F数(如传统相机上所标识), 在同样的光强度照射下, 其数值越小, 则像面越亮, 其数值越大, 则像面越暗. 对于一般的成像光学系统来说, F2.0-3.2就比较合适, 如果要求F数越小, 则设计越难, 结构越复杂, 制造成本就越高。这里的FNo为F2.1。

一个光学系统所能成像的角度范围. 角度越大, 则这个光学系统所能成像的范围越宽, 反之则越窄. 在实际产品当中, 又有光学FOV和机械FOV之分, 光学FOV是指SENSOR或胶片所能真正成像的有效FOV范围, 机械FOV一般大于光学FOV, 这是有其他考虑和用途, 比如说需要用机械FOV来参考设计Module或者手机盖的通光孔直径

这里的FOV角度理论上是越大越好,比如做隐藏式行车记录仪DVR的摄像头,这个时候就需要记录到的两边的图像越宽越好,越方便信息的完整性。当然这个FOV的角度直接影响到最终摄像头测距的距离,所以这个FOV角度也是最好根据摄像头的实际应用来选择。

畸变是指光学系统对物体所成的像相对于物体本身而言的失真程度.光学畸变是指光学理论上计算所得到的变形度。

TV畸变则是指实际拍摄图像时的变形程度, DC相机的标准是测量芯片(Sensor)短边处的变形.一般来说光学畸变不等于TV畸变, 特别是对具有校正能力的芯片来说. 畸变通常分两种: 桶形畸变和枕形畸变,比较形象的反映畸变的是哈哈镜,使人变得又高又瘦的是枕型畸变,使人变得矮胖的是桶型畸变。

这个一般都比较重视的是TV失真,越小越好,这样对于后面芯片的处理也就越简单,这里的镜头的TV失真是小于21%。

它是指一个光学系统所成像在边缘处的亮度相对于中心区域亮度的比值, 无单位. 在实际测量的结果中, 它不仅同光学系统本身有关, 也同所使用的感光片(SENSOR)有关. 同样的镜头用于不同的芯片可能会有不同的测量结果.

这个车载镜头的RI指标是≥53%。

不同的视场具有不同的CRA值,将所有视场的CRA做成一条曲线,即

所谓的CRA曲线。图纸中所示的CRA值为Sensor有效像高处的数值。

它从一定程度上反映了一个光学系统对物体成像的分辨能力.一般来说, MTF越高,  其分辨力越强, MTF越低, 其分辨力越低.由于MTF也只是从一个角度来评价镜头的分辨率,也存在一些不足, 故在目前的生产中, 大多数还是以逆投影检查分辨率为主。

它主要用于调整整个系统的色彩还原性. 它往往随着芯片的不同而使用不同的波长范围, 因为芯片对不同波长范围的光线其感应灵敏度不一样.对于目前应用较广的CMOS和CCD感光片它非常重要, 早期的CCD系统中, 采用简单的IRF往往还不能达到较好的色

透过率为50%时的红外光线频率,650±10nm @ T=50%

所以这里可以看到车载摄像头的镜头的红外滤光片基本上都是650nm±10nm的滤光片。

IR镀膜的规格对镜头的色彩还原性有较大的影响,另外结合sensor的特性,对镀膜进行优化,会改善镜头色彩还原能力,所以在有的摄像头拍照出来的色彩还原效果比较差的时候,软件优化都无能为力的时候,可以考虑IR镀膜来调整。

这个主要验证镜头会不会在极限温度下产生变形,导致图像失真。

譬如后拉摄像头,是在车子外面的,本身就风吹雨晒的,很容易有腐蚀液体在镜头表面,而且也会有车子清洗的时候会有玻璃洗涤液等腐蚀,所以车载镜头需要过耐腐蚀的实验。

这个是必须要过的,本身汽车的振动就会传递到摄像头这边,镜头作为一个刚性材料,需要在各种路况或者运输途中的振动都能完好如初,满足车载振动的实验要求。

一个摄像头防水好不好,底子牢靠不牢靠,其实最根本的除了连接处的防水做好以为,影响最大的就是镜头本身防水等级是否够高,一般摄像头整体防水是IPX6的 等级,但是镜头基本上要过IPX9K的等级,这样才能保障摄像头整体的防水能力,如果是车内的DVR行车记录仪,不会放置在车外,这个防水等级要求可以降低。

这个也是车载必须的实验之一,汽车难免会驾驶到海边等恶劣的环境中去,这时候空气中的盐雾成分就会比较大,一般的金属都会被腐蚀,时间久了以后就会锈穿,直接就坍塌掉,所以一般金属器件外表面会有涂覆防锈油,这样可以过耐盐雾的实验标准要求。

用HB铅笔在镜头G1外露面均匀划百格线(横10条,竖10条)用擦拭纸蘸酒精擦拭被涂画的地方。观察镜头表面,从圆心至外3/4圆处有1—2条膜伤为可采纳品,表面膜层无任何脱落为佳品。出现网状膜伤,判定不良。

这个实验主要目的是验证镜头表面的耐擦性能,特别是倒车后视的摄像头,看看下图中的保时捷的倒车后视摄像头,在尾箱正中间,这个位置非常容易被溅起来的小石头刮花镜头表面,如果刮花了,整个显示图像就非常不清晰了,所以需要镜头能耐比较强的擦刮实验,这里的百格实验就是这个目的。

测试镜头放进30W的紫外线老化试验箱,紫外线灯照射镜头240H,实验后所有性能和功能正常。

我们都知道紫外光很强,会把一些塑胶或者玻璃黄化掉,想想汽车在太阳暴晒后,座椅的颜色都会晒黄一样的道理,镜头有的是玻璃,有的是塑胶,塑胶就容易被紫外线晒黄变,所以车载镜头一定要过此试验标准。

其实解析力就是和摄像头的分辨率基本上是线性相关的额,我们看一个摄像头的分辨率高不高,最重要的就是几百万像素的摄像头。

比较老的倒车后视摄像头就是30W像素的,那个时候看倒车图像就非常模糊,现在无论是前视的DVR,倒车后视,还是360环视的摄像头,基本上都是100W的摄像头起步了,特斯拉Model 3前视三摄像头采用的三个CMOS图像传感器分辨率均为1280 x 960像素(120万像素),供应商为安森美半导体(ON Semiconductor)子公司Aptina。该摄像头捕捉的图像信息供给特斯拉Model 3驾驶员辅助自动驾驶仪控制模块单元使用。

其实还真不是,手机因为本身摄像头的能力就要求非常高,需要拍照出来像单反的效果,所以摄像头本身的像素就非常高,而且传输也直接通过MIPI进入到主控去处理。

反过来看看车载摄像头,这部分车载摄像头拍照出来的图像主要是给机器使用的,做一些自动驾驶或者行车监控的,这部分100W的像素完全能够满足机器需要的数据了,数据越多,对于主机处理的能力及算力就越高,但是自动驾驶效果提升反而没有好处。

加上车载摄像头传输的信号需要一个串行器去传输,这个串行器目前还不能传输上千万像素的芯片,传输2K的视频就非常不错了,而且这部分车载主机需要去处理整车8-10个摄像头,如果每个摄像头都是上千万的像素,这个处理器的难度也增大,成本也增大,所以车载摄像头并不是像手机拼像素的能力,而且处理图像的算法能力才是王道。

分辨率测试采用了国际标准的ISO12233解析度分辨率卡进行测试,采取统一拍摄角度和拍摄环境。而分辩率的计算又使用了HYRes软件,分开垂直分辨率和水平分辨率两部分进行,

可以简单理解就是按照标准的距离用摄像头去拍这个卡片,然后通过软件去读取这个摄像头拍摄的值,直接软件上就可以获取中心和四周的解析度的值,当然如果没有购买软件,也可以人肉眼去读取这个值,这样的误差由于人眼的视力因素,会有很大的偏差。

一般针对200W像素的摄像头,需要中心解析度≥800线,四周解析度≥700。

灵敏度是以32000K色温, 2000LUX照度的光线照在具有89-90%的反射系数的灰度卡上,用摄像机拍摄,图像电平达到规定值时,所需的光圈指数F,F值越大,灵敏度越高。

灵敏度越高最低照度越低,摄像机质量也越高。如果照度太低或太高时,摄像机拍摄出的图像就会变差。照度低可能会出现惰性拖尾。照度太高会出现图像“开花”现象。

所谓信噪比指的是信号电压对于噪声电压的比值,通常用S/N符号来表示,信噪比又分亮度信噪比和色度信噪比。

当摄像机摄取亮场景时,监视器显示的画面通常比较明快,观察者不易看出画面干扰噪点,而当摄像机摄取较暗的场景时,监视器显示的画面就比较昏暗,观察者此时很容易看到画面中雪花状的干扰噪点。摄像机的信噪比越高,干扰噪点对画面的影响就越小。

车载中可以接受的信噪比是40db,当信噪比达到55db的时候,这时候噪声基本看不出来。

我们看一看车载摄像头模组的关键参数,是不是还有几个没有阐述,比如白平衡、自动增益控制、色彩还原等等,上述摄像头描述就是主机控制,这里就有一个关键器件需要讲解一下,图像信号处理器ISP,这些活都是图像处理器ISP需要干的活。

下图展示了车载系统的基本组成:黄色的箭头代表数据的传输,蓝色的箭头代表控制信号的传输

从相机感受到电荷之后,转化成每个像素的数字信号,它的输出我们可以叫做一个bayer pattern,当bayer pattern进入到ISP之后,经过一系列的图像处理才会变成可以正常预览或者拍照形成的图像。

图像处理中有一些比较关键的步骤,比如我们会做白平衡,因为人眼的视觉会对所看见的颜色做一定的纠正,比如看在黄光照射的范围里,我们看到的黄光打亮白纸不再是白纸。所以很重要的是白平衡的矫正,白平衡的矫正之后会做demosaic,将每个像素的全部颜色通道全部还原回来。

然后每个Sensor的特性或者因为一些原因导致的偏色,需要通过颜色校正的矩阵乘法来做更正。再之后需要转到ycbcr域去做例如针对亮度通道或颜色通道的降噪或者补偿。总体来说,这是一个非常简单的流程,实际上在车载应用中的流程非常复杂,涉及到更多的如HDR多帧曝光,合成,tone mapping等算法。

这里有的是会放置ISP图像处理芯片在摄像头这边,把处理后的信号传输给到主机,有的是不放置ISP芯片,由主机那边的内置ISP芯片进行图像处理,这样摄像头端的散热会好很多,辐射也小。

比如倒车后视摄像头,摄像头距离主机距离都是5-8米,根据车身长度决定,这部分一般是把ISP放置在摄像头模组那端,这样传输过来的信号都是ISP那边进行降噪处理后的信号,抗干扰能力也更强,缺点就是体积会变大,散热要求非常高。

譬如有的行车记录仪DVR摄像头,这部分摄像头距离控制主机CPU非常近,而且对于造型要求也比较高,就会把ISP放置在CPU这边(很多DVR的CPU都内置了ISP芯片),无论是成本还是设计都是最优方案。

前面有提到了,摄像头出来的信号一定要经过ISP处理,那ISP要怎么处理这些信号,有哪些处理,这些其实都是涉及到色彩相关的内容,首先我们进行色彩相关内容的科普,然后再讲解ISP怎么处理这些信号。

camera sensor效果的调整,涉及到众多的参数,如果对基本的光学原理及sensor软/硬件对图像处理的原理能有深入的理解和把握的话,对我们的工作将会起到事半功倍的效果。否则,缺乏了理论的指导,只能是凭感觉和经验去碰,往往无法准确的把握问题的关键,不能掌握sensor调试的核心技术,无法根本的解决问题。

人眼对色彩的识别,是基于人眼对光线存在三种不同的感应单元,不同的感应单元对不同波段的光有不同的响应曲线的原理,通过大脑的合成得到色彩的感知。一般来说,我们可以通俗的用RGB三基色的概念来理解颜色的分解和合成。

理论上,如果人眼和sensor对光谱的色光的响应,在光谱上的体现如下的话,基本上对三色光的响应,相互之间不会发生影响,没有所谓的交叉效应。

但是,实际情况并没有如此理想,下图表示了人眼的三色感应系统对光谱的响应情况。可见RGB的响应并不是完全独立的。

下图则表示了某Kodak相机光谱的响应。可见其与人眼的响应曲线有较大的区别。

既然我们已经看到sensor对光谱的响应,在RGB各分量上与人眼对光谱的响应通常是有偏差的,当然就需要对其进行校正。不光是在交叉效应上,同样对色彩各分量的响应强度也需要校正。通常的做法是通过一个色彩校正矩阵对颜色进行一次校

该色彩校正的运算通常是由sensor模块集成或后端的ISP完成,软件通过修改相关寄存器得到正确的校正结果。值得注意的一点是,由于RGB -> YUV的转换也是通过一个3*3的变换矩阵来实现的,所以有时候这两个矩阵在ISP处理的过程中会合并在一起,通过一次矩阵运算操作完成色彩的校正和颜色空间的转换。

实际上颜色的描述是非常复杂的,比如RGB三基色加光系统就不能涵盖所有可能的颜色,出于各种色彩表达,以及色彩变换和软硬件应用的需求,存在各种各样的颜色模型及色彩空间的表达方式。这些颜色模型,根据不同的划分标准,可以按不同的原则划分为不同的类别。

匹配任意可见光所需的三原色光比例曲线

对于sensor来说,我们经常接触到的色彩空间的概念,主要是RGB , YUV这两种(实际上,这两种体系包含了许多种不同的颜色表达方式和模型,如sRGB, Adobe RGB, YUV422, YUV420 …), RGB如前所述就是按三基色加光系统的原理来描述颜色,而YUV则是按照 亮度,色差的原理来描述颜色。

不比其它颜色空间的转换有一个标准的转换公式,因为YUV在很大程度上是与硬件相关的,所以RGB与YUV的转换公式通常会多个版本,略有不同。

Y=0.30R+0.59G+0.11B  

U=0.493(B - Y) =  - 0.15R - 0.29G +0.44B  

V=0.877(R - Y) = 0.62R - 0.52G - 0.10B

但是这样获得的YUV值存在着负值以及取值范围上下限之差不为255等等问题,不利于计算机处理,所以根据不同的理解和需求,通常在软件处理中会用到各种不同的变形的公式,这里就不列举了。

体现在Sensor上,我们也会发现有些Sensor可以设置YUV的输出取值范围。原因就在于此。

从公式中,我们关键要理解的一点是,UV 信号实际上就是蓝色差信号和红色差信号,进而言之,实际上一定程度上间接的代表了蓝色和红色的强度,理解这一点对于我们理解各种颜色变换处理的过程会有很大的帮助。

23.

将黑体从绝对零度开始加温,温度每升高一度称为1开氏度(用字母K来表示),当温度升高到一定程度时候,黑体便辐射出可见光,其光谱成份以及给人的感觉也会着温度的不断升高发生相应的变化。于是,就把黑体辐射一定色光的温度定为发射相同色光光源的色温

常见光源色温:

随着色温的升高,光源的颜色由暖色向冷色过渡,光源中的能量分布也由红光端向蓝光端偏移。

值得注意的是,实际光源的光谱分布各不相同,而色温只是代表了能量的偏重程度,并不反映具体的光谱分布,所以即使相同色温的光源,也可能引起不同的色彩反应。

人眼及大脑对色温有一定的生理和心理的自适应性,所以看到的颜色受色温偏移的影响较小,而camera的sersor没有这种能力,所以拍出来的照片不经过白平衡处理的话,和人眼看到的颜色会有较大的偏差(虽然人眼看到的和白光下真实的色彩也有偏差)。

太阳光色温随天气和时间变化的原因,与不同频率光的折射率有关:

波长长的光线,折射率小,透射能力强,波长短的光线,折射率大,容易被散射,折射率低,这也就是为什么交通灯用红色,防雾灯通常是黄色,天空为什么是蓝色的等等现象的原因。

知道了这一点,太阳光色温变化的规律和原因也就可以理解和分析了。

所以从理论上可以看出,随着色温的升高,要对色温进行较正,否则,物体在这样的光线条件下所表现出来的颜色就会偏离其正常的颜色,因此需要降低sensor对红色的增益,增加sersor对蓝光的增益。

同时在调整参数时一定程度上要考虑到整体亮度的要保持大致的不变,即以YUV来衡量时,Y值要基本保持不变,理论上认为可以参考RGB->YUV变换公式中,RGB三分量对Y值的贡献,从而确定RGAIN和BGAIN的变化的比例关系。但实际情况比这还要复杂一些,要考虑到不同sensor对R,B的感光的交叉影响和非线性,所以最佳值可能和理论值会有一些偏差。

自动白平衡是基于假设场景的色彩的平均值落在一个特定的范围内,如果测量得到结果偏离该范围,则调整对应参数,校正直到其均值落入指定范围。该处理过程可能基于YUV空间,也可能基于RGB空间来进行。对于Sensor来说,通常的处理方式是通过校正R/B增益,使得UV值落在一个指定的范围内。从而实现自动白平衡。

在自动白平衡中,容易遇到的问题是,如果拍摄的场景,排除光线色温的影响,其本身颜色就是偏离平均颜色值的,比如大面积的偏向某种颜色的图案如:草地,红旗,蓝天等等,这时候,强制白平衡将其平均颜色调整到灰色附近,图像颜色就会严重失真。

因此,通常的做法是:在处理自动白平衡时,除了做为目标结果的预期颜色范围外,另外再设置一对源图像的颜色范围阙值,如果未经处理的图像其颜色均值超出了该阙值的话,根本就不对其做自动白平衡处理。由此保证了上述特殊情况的正确处理。

可见,这两对阙值的确定对于自动白平衡的效果起着关键性的作用。

可以看到随着色温的升高,其变化规律基本符合上节中的理论分析。不过这里多数参数与理论值都有一些偏差,其中日光灯的色温参数设置与理论值有较大的偏差,实际效果也证明该日光灯的参数设置使得在家用日光灯环境下拍摄得到的照片颜色偏蓝。修改其参数后实拍效果明显改善。(再查一些资料可以看到通常会有两种荧光灯色温 4000 和 5000K,目前所接触到的应该是5000K居多)

具体参数的调整,应该在灯箱环境下,使用各种已知色温的标准光源对标准色卡拍摄,在Pc机上由取色工具测量得到其与标准色板的RGB分量上的色彩偏差,相应的调整各分量增益的比例关系。为了更精确的得到结果,曝光量增益的设置在此之前应该相对准确的校正过。

从最明亮到最黑暗,假设人眼能够看到一定的范围,那么胶片(或CCD等电子感光器件)所能表现的远比人眼看到的范围小的多,而这个有限的范围就是感光宽容度。

人眼的感光宽容度比胶片要高很多,而胶片的感光宽容度要比数码相机的ccd高出很多!了解这个概念之后,我们就不难了解,为什么在逆光的条件下,人眼能看清背光的建筑物以及耀眼的天空云彩。而一旦拍摄出来,要么就是云彩颜色绚烂而建筑物变成了黑糊糊的剪影,要么就是建筑物色彩细节清楚而原本美丽的云彩却成了白色的一片。

再看人眼的结构,有瞳孔可以控制通光量,有杆状感光细胞和椎状感光细胞以适应不同的光强,可见即使人眼有着很高的感光宽容度,依然有亮度调节系统,以适应光强变化。

那么对于camera sensor来说,正确的曝光就更为重要了!

对于sensor来说,又是如何来判断曝光是否正确呢?很标准的做法就是在YUV空间计算当前图像的Y值的均值。调节各种曝光参数设定(自动或手动),使得该均值落在一个目标值附近的时候,就认为得到了正确的曝光。

那么如何确定这个Y的均值,以及如何调整参数使得sensor能够将当前图像的亮度调整到这个范围呢?

这就涉及到一个概念 18%灰,一般认为室内室外的景物,在通常的情况下,其平均的反光系数大约为18%,而色彩均值,如前所述,可以认为是一种中灰的色调。这样,可以通过对反光率为18%的灰板拍摄,调整曝光参数,使其颜色接近为中等亮度的灰色(Y值为128)。然后,对于通常的景物,就能自动的得到正确的曝光了。

当然这种自动判断曝光参数的AE功能不是万能的,对于反光率偏离通常均值的场景,比如雪景,夜景等,用这种方法就无法得到正确的曝光量了。所以在sensor的软件处理模块中,通常还会提供曝光级别的设定功能,强制改变自动曝光的判断标准。比如改变预期的亮度均值等。

曝光强度的调整,可以通过改变曝光时间,也可以通过改变亮度增益AG来实现。

曝光时间受到桢频的限制,比如摄像时要求15帧每秒的话,这时候曝光时间最长就不能超过1/15s,可能还有别的条件限制,实际的曝光时间还要短,在光线弱的情况下,单独调整曝光时间就无法满足帧频的需要了。

这时候还可以调整增益AG,来控制曝光的增益,降低曝光时间。但是,这样做的缺点是以牺牲图像质量为代价的,AG的增强,伴随的必然是信噪比的降低,图像噪声的增强。

所以,以图像质量为优先考虑的时候,曝光参数的调节通常是优先考虑调节曝光时间,其次在考虑曝光增益。当然曝光时间也不能过长以免由于抖动造成图像的模糊,而在拍摄运动场景时,对曝光时间的要求就更高了。

AG 的增大,不可避免的带来噪点的增多,此外,如果光线较暗,曝光时间过长,也会增加噪点的数目(从数码相机上看,主要是因为长时间曝光,感光元件温度升高,电流噪声造成感光元件噪点的增多),而感光元件本身的缺陷也是噪点甚至坏点的来源之一。因此,通常sensor集成或后端的ISP都带有降噪功能的相关设置。

根据噪点形成的原因,主要是AG或Exptime超过一定值后需要启动降噪功能,因此通常需要确定这两个参数的阙值,过小和过大都不好。

从下面的降噪处理的办法将会看到,降噪势附带的带来图像质量的下降,所以过早启动降噪功能,在不必要的情况下做降噪处理不但增加处理器或ISP的负担,还有可能适得其反。而过迟启动降噪功能,则在原本需要它的时候,起不到相应的作用。

那么如何判定一个点是否是噪点呢?我们从人是如何识别噪点的开始讨论,对于人眼来说,判定一个点是噪点,无外乎就是这一点的亮度或颜色与边上大部分的点差异过大。从噪点产生的机制来说,颜色的异常应该是总是伴随着亮度的异常,而且对亮度异常的处理工作量比颜色异常要小,所以通常sensor ISP的判定原则是一个点的亮度与周围点的亮度的差值大于一个阙值的时候,就认为该点是一个噪点。

处理的方式,通常是对周围的点取均值来替代原先的值,这种做法并不增加信息量,类似于一个模糊算法。

对于高端的数码相机,拥有较强的图像处理芯片,在判定和处理方面是否有更复杂的算法,估计也是有可能的。比如亮度和颜色综合作为标准来判定噪点,采用运算量更大的插值算法做补偿,对于sensor固有的坏点,噪点,采用屏蔽的方式抛弃其数据(Nikon就是这么做的,其它厂商应该也如此)等等。

对于手机sensor来说,这种降噪处理的作用有多大,笔者个人认为应该很有限,毕竟相对数码相机,手机sensor的镜头太小,通光量小,所以其基准AG势必就比相机的增益要大(比如相当于普通家用数码相机ISO800的水平),这样才能获得同样的亮度,所以电流噪声带来的影响也就要大得多。 这样一来,即使最佳情况,噪点也会很多,数据本身的波动就很大,这也就造成我们在手机照片上势必会看到的密密麻麻的花点,如果全部做平均,降低了噪点的同时,图像也会变得模糊,所以手机噪点的判断阙值会设得比较高,以免涉及面过大,模糊了整体图像。这样一来一是数据本身就差,二是降噪的标准也降低了,造成总体效果不佳。

对图像进行插值运算,将图像的尺寸扩大到所需的规格,这种算法就其效果而言,并不理想,尤其是当使用在手机上的时候,手机上的摄像头本身得到的数据就有较大的噪声,再插值的话,得到的图像几乎没法使用。实际上,即使是数码相机的数码变焦功能也没有太大的实用价值。如果插值算法没有硬件支持,则需要在应用层实现。我司某平台的数码变焦用的就是该种办法。

当摄像头不处在最大分辨率格式的情况下,比如130万像素的sensor使用640*480的规格拍照时,仍旧设置sersor工作在1280*960的分辨率下,而后通过采集中央部分的图像来获取640*480的照片,使得在手机上看来所拍物体尺寸被放大了一倍。也有很多手机采用的是这种数码变焦方式,这种办法几乎不需要额外的算法支持,对图像质量也没有影响,缺点是只有小尺寸情况下可以采用。此外在DV方式下也可以实现所谓的数码变焦放大拍摄功能。(这应该是一个卖点,对Dv来说,这种数码变焦还是有实际意义的)要采用这种变焦模式,驱动需要支持windowing功能,获取所需部分的sensor图像数据。

日常使用的普通光源如白炽灯、日光灯、石英灯等都是直接用220/50Hz交流电工作,每秒钟内正负半周各变化50次,因而导致灯光在1秒钟内发生100(50×2)次的闪烁,再加上市电电压的不稳定,灯光忽明忽暗,这样就产生了所谓的“频闪”。

因为人眼对光强变化有一定的迟滞和适应性,所以通常看不出光源的亮度变化。但是依然还是会增加眼睛的疲劳程度。所以市场上才会有所谓的无频闪灯销售。

如今主流车载摄像头的像素并不高,通常在200万以下,但对可靠性、耐温、实时性等要求都高于消费级产品。此外针对流媒体后视镜,以及变道预警、车道保持等驾驶辅助功能,有一个很重要的要求是消除LED灯闪烁现象,这是车载应用的特殊要求。

对于camera sensor来说,没有人眼的迟滞和适应过程,所以对光源亮度的变化是比较敏感的。如果不加抑制,在预览和DV模式下,可能会有明显的图像的明亮变化闪烁的现象发生。

在视频处理上,“LED闪烁”是指在录像时拍摄到的LED灯闪烁的状况。

“LED闪烁”是由LED驱动方式而产生的现象,LED灯以交流方式驱动,为让人眼感觉不到闪烁及亮暗变化,驱动频率一般在90Hz以上,即最慢脉冲周期为11毫秒左右,LED在11毫秒周期内实现一次亮灭,为节能及延长使用寿命,占空比通常不超过50%,如果相机曝光时间较短(例如3毫秒),则有可能曝光时间正好对上LED被关灭期,这时候图像传感器抓到的就是LED灭掉的图像,如果是LED阵列,在这种情况下拍到的图像将可能是一部分亮,一部分暗,这就是“LED闪烁”现象。

因此,LED闪烁是数字成像技术所固有的现象,拍摄到的闪烁是由于曝光时间横跨LED交流驱动亮暗周期而造成,是“真正”的影像。但这样“真正”的影像,传输到监视屏幕由人类或电子系统来识别时,会造成误判。如果流媒体后视镜没有防LED闪烁能力,遇到配备了LED车灯的汽车时,容易导致危险,驾驶者可能将图像传感器传出的闪烁车灯误认作转向灯或双闪灯。

在高级驾驶辅助系统中,LED闪烁造成的危害更大。LED闪烁会导致系统无法正常检测电子路标与交通信号灯,无法区分转向灯与车尾灯。

如何解决呢?考虑到频闪的周期性,在一个周期内,光源亮度的累积值,应该是大体一致的,所以,如果控制曝光的时间是频闪周期的整倍数,那么每一帧图像的亮度就大体是一致的了,这样就可以有效地抑制频闪对图像亮度的影响。

所以,在自动曝光的模式下,sensor会根据频闪的频率,调整曝光时间为其周期的整倍数。因为各地的交流电的频率不同,所以有50Hz/60Hz之分。

在具体设置相关Sensor寄存器的时候,要根据电流频率和sensor的时钟频率,分辨率等,计算出频闪周期对应的时钟周期数等。

分离像素技术图像传感器中,有大小两种像素,其中小像素降低敏感度,延长曝光时间,保证最慢速率驱动LED的每一个周期的亮起时间都被捕捉到,大像素曝光时间维持正常,两种像素获取的图像做合成处理,最终得到的图像将不会有闪烁现象。

因为小像素的动态范围有限,所以这种解决方案最终还是会牺牲一些动态范围,难以将图像传感器的全部动态范围发挥出来。但汽车应用场景复杂,经常会遭遇亮暗变化大的场景,所以对动态范围的要求一直很高,如果能在高动态范围基础上实现去闪烁功能,显然能应用到更广泛的场景中。

豪威科技推出的图像处理器(ISP)OAX4010,可以在不牺牲动态范围的基础上,实现去闪烁功能。OAX4010搭配OX01A10/OX02A10,可以对一帧图像在“像素单元级实现三次曝光”,即长曝光、短曝光和超短曝光,然后ISP对这三幅图像进行实时处理,在去闪烁(需要长时间曝光)的同时,维持住120dB的动态范围。

其实前面学习了图像和色彩相关内容,我们可以知道,ISP需要处理的内容还蛮多的,我们最常见的就是畸变校正,白平衡,去噪声、空间转换、WDR合成宽动态。

景物通过 Lens 生成的光学图像投射到 sensor 表面上, 经过光电转换为模拟电信号, 消噪声后经过 A/D 转换后变为数字图像信号, 再送到数字信号处理芯片( DSP) 中加工处理。所以,从 sensor 端过来的图像是 Bayer 图像,经过黑电平补偿 、镜头矫正 、坏像素矫正 、颜色插值 、Bayer 噪声去除、 白平衡矫正、 色彩矫正 、 gamma 矫正、 色彩空间转换( RGB 转换为 YUV) 、 在 YUV 色彩空间上彩噪去除与边缘加强、 色彩与对比度加强,中间还要进行自动曝光控制等, 然后输出 YUV( 或者 RGB) 格式的数据, 再通过 I/O 接口传输到 CPU 中处理。

ISP 模块支持标准的Sensor图像数据处理,包括自动白平衡、自动曝光、Demosaic、坏点矫正及镜头阴影矫正等基本功能,也支持WDR、DRC、降噪等高级处理功能。

  • 支持黑电平校正

  • 支持静态以及动态坏点校正,坏点簇矫正

  • 支持 bayer 降噪

  • 支持固定噪声消除

  • 支持 demosaic 处理

  • 支持紫边校正(CAC)

  • 支持 gamma 校正

  • 支持动态范围压缩(DRC)

  • 支持 Sensor 内部合成宽动态功能(Sensor Built-in WDR)

  • Hi3559AV100 最大支持 4 合 1 宽动态功能(WDR),Hi3519AV100/Hi3516CV500 最大

  • 支持 2 合 1 宽动态功能(WDR)

  • 支持自动白平衡

  • 支持自动曝光

  • 支持自动对焦

  • 支持 3A 相关统计信息输出

  • 支持镜头阴影校正

  • 支持图像锐化

  • 支持数字防抖(Hi3516CV500 不支持)

  • 支持自动去雾处理

  • 支持颜色三维查找表增强

  • 支持局部对比度增强

  • 支持亮度着色(Hi3516CV500 不支持)

  • 支持 3D 降噪

前面很多ISP处理的色彩相关内容已经有描述了,我们重点讲讲WDR 宽动态指标,这个在车载摄像头中对于自动驾驶非常非常重要的指标,譬如经常有机构反馈的太阳光太强的时候,摄像头拍出来的图片就曝光了,显示不清楚,或者由太阳很强的地方突然进入隧道,这个时候拍出来的图片就太暗,看不清楚内容,其实这个都和WDR宽动态指标密切相关。

sensor的动态范围就是sensor在一幅图像里能够同时体现高光和阴影部分内容的能力,实际上就指的是摄像头同时可以看清楚图像最亮和最暗部分的照度对比。

DR = 20log10(i_max / i_min);db

i_max 是sensor的最大不饱和电流—-也可以说是sensor刚刚饱和时候的电流 i_min是sensor的底电流(blacklevel);

在自然界的真实情况,有些场景的动态范围要大于100dB。

人眼的动态范围可以达到100dB。

上图的传感器只有16个象素,这些象素能在传感器曝光过程中迅速吸收光子。一旦这些象素满载,光子便会溢出。溢出会导致信息(细节)损失,以红色为例,高光溢出使满载红色的象素附近的其他象素的值都变成255,但其实它们的真实值并没

标签: 二极管tv02w141传感套筒含氧传感器套筒封装的蓝光激光二极管防水fpc连接器数码fpc连接器led二极管套隔离柱

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台