for j=m*500 1:(m 1)*500;
at(1,j)=0;
end
else
for j=m*500 1:(m 1)*500;
at(1,j)=1;
end
end end; subplot(313); plot(t,at); axis(0,5,-1,2); title(‘抽样后波形’)
五、实验报告要求:
1.根据实验仿真结果,画出相应波形图 2. 分析和解释模拟结果
实验四 2PSK数字调制与解调
一、实验目的:
1. 用MATLAB仿真技术实现数字调制与解调,基带数字调制与解调。 2. 掌握键控法产生2PSK信号方法;
3. 了解2PSK信号频谱与数字基带信号频谱的关系。
二、实验仪器:
安装Matlab软件的PC机一台
三、实验原理:
本设计中使用的流程图如图2-17所示。
s(t)乘法器 乘法器低通滤波器抽样判断器 cos?ctn(t) cos?ct
图 2-17 2PSK调制解调框图
1. PSK调制原理
在二进制数字调制中,当正弦载波的相位随二进制数字基带信号离散时,二进制移相键控(2PSK)信号。2PSK有两种方法可以调制信号,即模拟调制和键控。通常使用已调信号载波 0°和 180°二进制数字基带信号分别表示 1 和 模拟调制法采用两个相反的载波信号进行调制。2PSK以载波相位变化为参考基准,当基带信号为0时,相位相对于初始相位为0°,当基带信号为1时,相对于初始相位为18°。
键控法是利用载波相位携带二进制信息的调制方法。通常使用0°和180°分别代表0和1。当时域表达式为:
??e2PSK???ang(t?nTs)?cos?ct
?n?其中,2PSK的调制中an必须是双极码。本设计采用模拟调制法。图2-18和图2-19显示两种方法原理图。
图 2-18 模拟调制法原理图
图 2-19 按键法原理图
2. PSK解调原理
由于2PSK范围是恒定的,必须进行连贯的调整。在相乘器中乘以带滤波器的信号,然后用低通滤波器过滤高频重量,并进行抽样判断。判断器是根据极性来判断的。即正抽样值为1,负抽样值为0。PSK如图2-20所示,每个点的波形如图2-21所示。
由于2PSK在信号载波回复过程中存在180°相位模糊,即恢复的本地载波可能与所需的相关载波相同,也可能相反。这种相位关系的不确定性会导致解调出的数字基带信号与发送的基带信号正好相反,即1变为0,0变为1。这种现象称为2PSK方式的“倒π现象或反工作。但在这个模拟中,它直接给出了同频同相的载波信号,所以没有这个问题。
e2PSK(t)定时脉冲e输出cos?ctb
图 2-20 2PSK相关解调原理图 10011atTsbtctdte10011t
图 2-21 相关解调各点波形图
四、实验步骤:
通过编写M文件程序(见附录),产生随机信号,并按流程图2-17所示的顺序编程每个模块。注意声明和解释。操作程序,实现2PSK调制和解调过程。
2PSK调制解调程序和注释 clear all close all i=10; j=5000; fc=四、%载波频率 fm=i/5;%码元率 B=2*fm; t=linspace(0,5,j); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% a=round(rand(1,i));%随机序列,基带信号 figure(3); stem(a); st1=t; for n=1:10
if a(n)<1;
for m=j/i*(n-1) 1:j/i*n
st1(m)=0;
end
else
for m=j/i*(n-1) 1:j/i*n
st1(m)=1;
end
end end figure(1); subplot(411); plot(t,st1); title(基带信号st1'); axis(0,5,-1,2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&&&&&&%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%由于PSK中间是双极性信号,所以取反上述单极性信号,与之形成双极性码 st2=t;
for k=1:j;
if st1(k)>=1;
st2(k)=0;
else
st2(k)=1;
end end; subplot(412); plot(t,st2); title(基带信号反码st2'); axis(0,5,-1,2); st3=st1-st2; subplot(413); plot(t,st3); title双极基带信号st3'); axis([0,5,-2,2]); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% s1=sin(2*pi*fc*t); subplot(414); plot(s1); title(载波信号s1'); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% e_psk=st3.*s1; figure(2); subplot(511); plot(t,e_psk); title('e_2psk'); noise=rand(1,j); psk=e_psk noise;%加入噪声 subplot(512); plot(t,psk); title(加噪后波形); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% psk=psk.*s1;%乘载波 subplot(513); plot(t,psk); title('与载波s1相乘后波形; [f,af] = T2F(t,psk);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%通过低通过低通过滤波器通过低通过低通过滤波器通过低通过 [t,psk] = lpf(f,af,B); subplot(514); plot(t,psk); title(低通滤波后波形); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% for m=0:i-1;
if psk(1,m*500 250)<0;
for j=m*500 1:(m 1)*500;
psk(1,j)=0;
end
else
for j=m*500 1:(m 1)*500;
psk(1,j)=1;
end
end end subplot(515); plot(t,psk); axis(0,5,-1,2); title(‘抽样后波形’)
五、实验报告要求:
1.根据实验仿真结果绘制相应的波形图 2. 分析和解释模拟结果
附录
实验
二、
三、四
傅立叶T2F函数
%利用FFT计算信号真实频谱抽样相比,计算信号频谱。 %脚本文件T2F.m定义了函数T2F,傅立叶变换计算信号。 function [f,sf]= T2F(t,st) %This is a function using the FFT function to calculate a signal's Fourier %Translation
%Input is the time and the signal vectors,the length of time must greater %than 2
%Output is the frequency and the signal spectrum dt = t(2)-t(1); T=t(end); df = 1/T; N = length(st); f=-N/2*df:df:N/2*df-df;
sf = fft(st); sf = T/N*fftshift(sf); 低通滤波器函数使用 function [t,st]=lpf(f,sf,B) %This function filter an input data using a lowpass filter %Inputs: f: frequency samples % sf: input data spectrum samples
% B: lowpass's bandwidth with a rectangle lowpass %Outputs: t: time samples % st: output data's time samples df = f(2)-f(1); T = 1/df; hf = zeros(1,length(f));%全零矩阵
bf = [-floor( B/df ): floor( B/df )] floor( length(f)/2 ); hf(bf)=1; yf=hf.*sf; [t,st]=F2T(f,yf); st = real(st); 反傅立叶函数
%脚本文件F2T.m定义了函数F2T,计算信号的反傅立叶变换。 function [t,st]=F2T(f,sf) %This function calculate the time signal using ifft function for the input %signal's spectrum
df = f(2)-f(1); Fmx = ( f(end)-f(1) df); dt = 1/Fmx; N = length(sf); T = dt*N; %t=-T/2:dt:T/2-dt; t = 0:dt:T-dt; sff = fftshift(sf); st = Fmx*ifft(sf);
《移动通信系统》
—— 实验报告
基于PI/4-DQPSK调制方式的发射机与接收机
学院:通信工程
专业班级:08电子信息工程7班 姓名:何峰 学号:20085025 指导老师:李明玉
2011年12月29日
一、实验目的
1. 熟悉ADS软件的使用、能用该软件进行原理图设计和原理图仿真。 2. 了解PI/4-DQPSK调制方式的原理及调制过程。 3. 了解发射机、接收机的结构及工作原理;
4. 进一步了解移动通信信道对信号的衰落特性,了解信道中的3类损耗和4种效应;
二、实验器材
硬件条件:PC机一台 软件环境:ADS软件
三、实验原理
π/4DQPSK调制和基带差分解调的工作原理,解决了内插、脉冲成形、位定时恢复等几个关键问题,在此基础上对整个通信系统进行了计算机仿真。仿真结果证明了基于样点绝对值比较的位定时恢复算法应用于数字化解调中可获得较好的效果,并且给出了调制解调中脉冲成形滤波器的滚降因子α和位定时恢复算法中的M值对系统误码性能的影响,从而为实际系统的设计提供了有效的依据PI/4-DQPSK调制调制原理对输入数据经串/ 并变换、差分相位编码、内插和成形滤波器后,再经过正交调制就得到已调π/4sin (ω1 t) sinθk式中,k为第k个码元内信号的初相。上式展开为
e4DQPSK(t)coskcosctsinksinctIkcosctksinct ( * ) 当前码元内初相k是前一码元初相k1与当前码元相位跳变量k之和,即
kk1k
(*)式中的Ik和Qk分别表示为
Ikcosk1cosksink1sinkQksink1coskcosk1sink
令cosk1Ik1,sink1Qk1,上面两式可以表示为
IkIk1coskQk1sinkQkQk1coskIk1sink (△) (△)式是PI/4-DQPSK信号的基本关系式,它表明了当前码元的两个正交信号Ik、Qk与前一码元Ik
1、Qk1及当前码元相位跳变量k之间的关系。
PI/4-DQPSK解调
可以用相干检测、差分检测或鉴频器等方法解调PI/4-DQPSK信号。其中中频差分检测原理框图如下所示。
a(t)cos(ctk)cos[c(tTs)k1]b(t)cos(c(tTs)k1)[sin(ctk)]
当cTs2n时,两个低通滤波器的输出分别为
ek0.5coskfk0.5sink
根据上表可制定如下判决抽样规则:
ek的抽样值ek的抽样值fk的抽样值f的抽样值k0,xk为“1 0,xk为“-1 0,yk为“1 0,yk为“-1
四、实验内容
1、 顶层原理图的设计
如下图所示是整个工程的原理图。分为三部分:信源、信道和信宿。
信源部分:由比特发信号发成器产生随二进制的随机码,经过串并转换之后,对两路信号分别进行差分相位编码形成I、Q两路信号,再用I、Q信号分别对两个正交载波进行调制,最后由发射机送至信道。
信道部分:软件模拟实际信道的移动、衰落等特性,并通过基站接收转发至信宿。 信宿部分:首先由接收机从空中信道接收来自于基站的微弱信号,经过高频放大、中频放大、解调后,显示所接收的比特信息,并分析误差向量幅度。
2、 主要模块的原理图及分析
1. PI/4-DQPSK信号调制器
2. 发射机
发射机的作用是对PI/4-DQPSK信号进行上混频(至射频)、滤波和放大,提高发射信噪比,尽可能提高信号在移动信道中的传输距离。发射机首先对PI/4-DQPSK信号进行上混频,混频器由乘法器和带通滤波器构成,本振频率为766.5MHz,上混频至836.5MHz;滤波器采用切比雪夫带同滤波器,中心频率为射频836.5MHz,通频带为30MHz,滤除带外噪声;放大器由两级构成,提供足够的信号增益。如下图所示其原理图:
3. 接收机
信号经过移动信道的传输,由阴影效应、多径效应所引起的慢衰落和快衰落损耗,使得有用信号变得十分微弱。对于所接收到的信号,接收机收件进行高频滤波,提高信噪比,紧接着进行16dB的高频放大,使信号有足够大的幅度进行瞎混频的操作。对混频后的信号做低频滤波和低频放大处理,PI/4-DQPSK信号便从高频信号中解调出来了。如下图所示:
4. PI/4-DQPSK信号解调
解调器采用的是中频差分检测解调。输出的信号是I、Q两路正交信号。这两路信号由后面的“RectoCx”模块将并行转换为串行输出。
五、 实验结果及分析
1、PI/4-DQPSK信号功率谱
-20dBm(Mod_Spectrum)-40-60-80-100-120-14069.8569.9069.9570.0070.0570.1070.15freq, MHz
2、I路调制信号和解调信号
I_ref (blue) & I_out{recovered} (red)21Iref, VIout, Vm20m1-1-20.60.70.80.91.01.11.21.31.41.51.61.7time, msec
3、发射信号功率谱
20dBm(Xmit_Spectrum)0-20-40-60-80-100836.35836.40836.45m4m3m3freq=836.5MHzdBm(Xmit_Spectrum)=-12.764m4freq=836.5MHzdBm(Xmit_Spectrum)=4.132836.50836.55836.60836.65freq, MHz
4、接收机前端信号功率谱: dBm(Recv_In_Spectrum)-60-80-100-120-140-160836.35836.40836.45836.50836.55836.60836.65freq, MHz
5、接收机后端信号功率谱:
Receiver IF SpectrumdBm(Recv_Out_Spectrum)200-20-40-60-80-10069.85m6m5m5freq=69.98MHzdBm(Recv_Out_Spectrum)=-39.365m6freq=70.01MHzdBm(Recv_Out_Spectrum)=-3.34469.9069.9570.0070.0570.1070.15freq, MHz
RCVR_power14.12522.543XMTR_power
6、接收机后端信号波形:
IF Trajectory DiagramRecv_IF_Timed, V-3-2-10123time (0.0000sec to 3.457msec)
7、I路解调信号眼图:
Eye Diagram21Eye0-1-
2六、 设计心得
《移动通信系统》这门课总共做了四次实验,总的来说,虽然收获不是很大,但至少还是有那么一点点收获的。这让我有多了解了一种强大的软件—ADS,一种强大的通信系统仿真软件,对于设计通信模式,基站等有很大的理论基础。通过从频域和时域电路仿真到电磁场仿真的全套仿真技术。不过短短的四次实验对我而言还没能学会用它完整的设计一套系统。对于老师给出的10次实验,我只是一一浏览了一遍,了解了一下其仿真结果,对于其中的设计原理自己还是表示比较抽象。本次实验我选择了第9次的实验工程—基于PI/4-DQPSK调制方式的发射机与接收机,对其中我仿真结果及实验原理进行了了解,虽然到现在还是没有完全弄清楚是怎么回事,但至少还是实践过了,还是有一定的收获的。那么虽然以后也许不会接触到这方面的知识了,但还是在自己人生的知识阅历上增加了不少的东西。希望在接下来的课程考试中有个比较好的发挥,为这门课——《移动通信系统》划上一个圆满的句号。
0.008.2316.4624.6932.92time, usec41.1549.3857.6165.8474.0782.30
实验二 OQPSK调制解调实验 一. 实验目的
1、掌握OQPSK调制解调原理。
2、理解OQPSK的优缺点。
二. 实验内容
1、观察OQPSK调制过程各信号波形。
2、观察OQPSK解调过程各信号波形。
三. 预备知识
1、OQPSK调制解调的基本原理。
2、OQPSK调制解调模块的工作原理及电路说明。
四. 实验器材
1、移动通信原理试验箱 一台
2、200M双踪数字示波器 一台
五.实验原理
OQPSK调制解调原理
OQPSK 又叫偏移四相相移键控,它同QPSK 的不同之处是在正交支路引入了一个码元(TS)的延时,这使得两个支路的数据错开了一个码元时间,不会同时发生变化,而不象QPSK那样产生±π的相位跳变,而仅能产生±π/2的相位跳变,避免接收解调时可能出现的相位模糊现象。±π相位的跳变消除了,所以OQPSK 信号的带限不会导致信号包络经过零点。OQPSK包络的变化小多了,因此对OQPSK的硬限幅或非线性放大不会再生出严重的频带扩展,OQPSK即使再非线性放大后仍能保持其带限的性质。OQPSK的调制解调方法同QPSK一样。
六、实验步骤
1.A方式的OQPSK调制实验
(1)将“调制类型选择”拨码开关拨为00001000、0100,则调制类型选择为A方式的OQPSK调制。
(2) 分别观察并说明一个周期数据波形的“NRZ”与“DI”码、“NRZ”与“DQ”码串并转换情况。
图2-1 NRZ与DI码
图2-2 NRZ与DQ码
图形分析: (3)用示波器观察并分析说明“I路成形”信号波形与“I 路调制”同相调制信号波形、“Q 路成形”信号波形与“Q 路调制”正交调制信号波形。
图2-3 I路成形I路调制 图形分析:
(4)用示波器观察“I路成形”信号、“Q 路成形”信号的X-Y波形(即星座图)。
图2-4 Q路成形和Q路调制
图形分析:
图2-5
I路成形和Q路成形的星座图
(5)观察比较OQPSK和QPSK调制器的“调制输出”波形并加以分析说明。
图2-6 OQPSK调制输出波形 图2-7 ch1为NRZ,ch2为OPSK调制输出 图形分析: 2.B 方式的OQPSK调制实验
(1)将“调制类型选择”拨码开关拨为0000100
1、0001,则调制类型选择为B方式的QPSK调制。
(2)分别观察并说明一个周期数据波形的“NRZ”与“DI”码、“NRZ”与“DQ”码串并转换情况。
图2-8 NRZ和DI码
图2-9 NRZ和DQ码 图形分析:
(3)双踪观察并分析说明“DI”与“I路成形”信号波形、“DQ”与“Q 路成形”信号波形。比较说明A和B方式“I路成形”信号、“Q 路成形”信号波形有什么不同。
图2-10
DI和I路成形
图2-11
DQ和Q路成形双踪观 图形分析:
(4)察并分析说明“I路成形”信号波形与“I 路调制”调制信号波形、“Q 路成形”信号波形与“Q 路调制”调制信号波形。
图2-12 I路成形和I路调制 图2-13 Q路成行和Q路调制 图形分析:
(5)观察说明“调制输出”波形相位特点;并将B方式的“调制输出”波形同A方式的“调制输出”波形进行比较说明相位的相同点和不同点。
图形分析:
图2-14 B方式的调制输出波形
(6)用示波器观察“I路成形”信号、“Q 路成形”信号的X-Y波形(即星座图),分析并说明与A方式的星座图有什么不同。
图形分析:
图4-13 I路成形和Q路成形的星座图 3.A方式的OQPSK解调实验
(1)将“调制类型选择”拨码开关拨为00001000、0100,“解调类型选择”拨码开关拨为00001000、0100,
(2) 双踪观察并分析说明“I路解调”信号波形与“I 路滤波”信号波形;“Q 路解调”信号波形与“Q路滤波”信号波形对应关系。
图4-14 ch1为I路解调ch2为I路滤波 图4-15 ch1为Q路解调ch2为Q路滤波 图形分析:
(3)比较解调端“NRZ”波形与调制端“NRZ”波形(的一个周期长度的码型与延时)情况并进行说明。
图4-16 ch1为解调端NRZ ch2为调制段NRZ 图形分析:
4.B方式的QPSK解调实验
(1)将“调制类型选择”拨码开关拨为0000100
1、0100,“解调类型选择”拨码开关拨为0000100
1、0100,则解调类型选择为B 方式的QPSK解调。 (2) 双踪观察并分析说明“I路解调”信号波形与“I 路滤波”信号波形;“Q 路解调”信号波形与“Q路滤波”信号波形对应关系。
图4-17 ch1为I路解调I 路滤波 图4-18 ch1为Q路解调Q路滤波
图形分析:
(3)比较解调端“NRZ”波形与调制端“NRZ”波形(的一个周期长度的码型与延时)情况并进行说明。
图4-19 ch1为解调端NRZ,ch2为调制端NRZ
图形分析:
通信原理 实验指导书
编写人:李善姬 审核人:朱东弼
目 录
实验一
信号发生器系统实验 .................................................................................... 1 实验二
数字基带信号 ................................................................................................ 4 实验三 实验四 实验五 实验六 实验七 实验八 FSK调制解调实验 ....................................................................................... 8 2PSK(2DPSK)调制实验 ............................................................................. 13 2PSK(2DPSK)解调实验 ............................................................................. 16 脉冲编码调制(PCM)及系统实验 .............................................................. 20 增量调制编码系统实验 .............................................................................. 23 增量调制译码系统实验 .............................................................................. 26
实验一
信号发生器系统实验
一、实验目的
1. 了解多种时钟信号的产生方法。
2. 掌握用数字电路产生伪随机序列码的实现方法。 3. 了解PCM编码中的收、发帧同步信号的产生过程。
二、预习要求
阅读本实验原理部分内容,理解信号发生器系统的原理,熟悉各芯片的功能。
三、实验仪器仪表
1. 双踪示波器
一台 2. 电子与通信原理实验箱
一台 3. 万用表
一块 4. 数字频率计
一台 5. 通信原理实验箱一
一台
四、实验电路
时钟信号是其他各级电路的重要组成部分,在通信电路及其他电路中,若没有时钟信号,则电路基本工作条件将得不得满足而无法工作。因此,我们在做电子与通信原理各项实验时,必须先对所有的时钟信号加以了解、熟悉,以便能顺利的进行后面的各项实验。
电路组成如下:
信号发生器原理框图如图1-1所示。
图1-1 信号发生器原理框图
音频信号发生器原理框图如图1-2所示。
图1-2 音频信号发生器原理框图
信号发生器原件布局图如图1-3所示。
图1-3 信号发生器原件布局图
五、实验内容
1. 用时钟信号源产生的信号作为总时钟输入,S001开关解
2、3,分别分析各级电路,并测出各测量点的波形。
2. 观测简易正弦信号发生器波形,调节W10
4、W10
5、 W10
6、W107电位器,观测输出变化。
六、实验步骤及注意事项
1. 接好电源,打开电源开关,相对应的指示发光二极管亮,使电路工作。 2. 该实验单元的元器件位置结构见图1-3所示。
3. 分析该实验电路的电路原理图1-
1、1-2,并理解其工作过程。
4. 在测试正弦波信号发生器输出波形时,注意调节W10
4、W10
5、 W10
6、W107电位器,观察输出信号波形的变化。
5. 在分析测试PCM编译码电路中使用的8KHz窄脉冲作收、发分频同步信号时,先分析该电路的各点工作波形与时序关系,然后画出波形图,并用示波器对各个测试点进行测试,并作详细的分析验证。
七、实验报告要求
1. 分析实验电路的工作原理,叙述其工作过程。 2. 根据实验测试记录,画出各测量点的波形图。
3. 写出完成本次实验后的心得体会,以及对本次实验的改进意见。
实验二
数字基带信号
一、实验目的
1. 了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 2. 掌握AMI码、HDB3码的编码规则。 3. 掌握从HDB3码中提取位同步信号的方法。
4. 掌握集中插入帧同步码时分复用信号的帧结构特点。 5. 了解HDB3编译码集成电路CD22103。
二、实验仪器仪表
1. 信号源
一台 2. 双踪示波器
一台 3. 频率计
一台 4. 万用表
一块 5 实验系统2
一台
三、实验电路
本实验相关实验电路如下:
图2-1为HDB3编译码方框图,图2-2为HDB3编译码电路图,图2-3为HDB3原件布局图。
图2-1 HDB3编译码方框图
图2-2 HDB3编译码电路图
图2-3 HDB3原件布局图
四、实验内容
1. 用示波器观察单极性非归零码(NRZ)、信号交替反转码(AMI)、三阶高密度双极性码(HDB3)、整流后的AMI码及整流后的HDB3码。
2. 用示波器观察从HDB3码中和从AMI码中提取位同步信号的电路中有关波形。
3. 用示波器观察HDB
3、AMI译码输出波形。
五、实验步骤
1. 熟悉数字信源单元和HDB3编译码单元的工作原理。 2. 用示波器观察数字信源单元上的各种信号波形。 3. 用示波器观察HDB3编译码单元的各种波形。
六、实验报告要求
1. 根据实验观察和记录回答下列问题: (1) 不归零码和归零码的特点是什么?
(2) 与信源代码中的“1”码相对应的AMIA码及HDB3码是否一定相同?为什么?
2. 设置一组信息码,给出对应的AMIA及HDB3码的代码和波形。 3. 总结从HDB3码中提取位同步信号的原理。
4. 写出完成本次实验后的心得体会以及对本次实验的改进意见。
实验三
FSK调制解调实验
一、实验目的
1. 理解FSK调制工作原理及电路组成。
2. 理解利用锁相环解调FSK的原理和实现方法。
二、实验仪器仪表
1. 信号源
一台 2. 双踪示波器
一台 3. 频率计
一台 4. 万用表
一块 5 通信原理实验箱二
一台
三、实验内容
1. 测试FSK调制电路各测量点波形,并作详细分析。 2. 测试FSK解调电路各测量点波形,并作详细分析。
四、实验电路
本实验相关实验电路如下: 图3-1为FSK调制原理图; 图3-2为FSK解调原理图; 图3-3为FSK调制解调原件分布图。
图3-1 FSK调制原理图
图3-2 FSK解调原理图
图3-3 FSK调制解调原件分布图
五、实验步骤
1. FSK调制实验 (1) 拨动开关为ON;
(2) 按下“开始”与“FSK”功能键;
(3) 跳线开关设置:S9001-
2、S9011-
2、S9021-2; (4) 在CA901上插电容;
(5)注意选择不同的数字基带信号的速率。 2. FSK解调实验
接通开关S950“1”和“2”脚,输入FSK信号给解调电路,注意观察:“1”、“0”码内所含载波的数目;
观察FSK解调输出测试点波形,并作记录。同时观察FSK调制端的基带信号,比较两者波形,观察是否失真。
六、实验报告要求
1. 分析实验电路的工作原理,叙述其工作过程。
2. 根据实验测试记录,在坐标纸上画出各测量点的波形图,并分析实验现象。 3.写出完成本次实验后的心得体会以及对本次实验的改进意见。
实验四
2PSK(2DPSK)调制实验
一、实验目的
1. 掌握2PSK(2DPSK)调制的工作原理及电路组成。 2. 了解载频信号的产生方法。
3. 掌握二相绝对码与相对码的变换方法。
二、实验仪器仪表
1. 信号源
一台 2. 双踪示波器
一台 3. 频率计
一台 4. 万用表
一块 5 通信原理实验箱二
一台
三、实验电路
本实验相关实验电路如下所示:
图4-1为PSK调制电路原件分布图,图4-2为PSK调制电路图。
图4-1 PSK调制电路原件分布图
图4-2 PSK调制电路图
四、实验内容
1. 二相PSK调制器
用内载波发生器产生的信号作输入载波信号来观察T700-T706各测量点的波形。
2. 二相DPSK调制器
加入差分编码器电路来传输二相DPSK信号,重复上一组内容。
五、实验步骤
1. 拨动开关S702为ON;
2. 按一下“开始”与“PSK”功能键,显示代码“PSK”; 3. 跳线开关设置功能如下:
K700 1-2:伪随机码,码序列为1110010,速率为32KHz的绝对码;
K700 2-3:伪随机码,码序列为1110010,速率为32KHz的相对码;
K700 4-5:128KHz方波,码序列为11100码;
K700 5-6:64KHz方波,码序列为11100码;
K704 1-2:1.024MHz方波,作为载波输入;
K704 2-3:512KHz方波,作为载波输入。
4. 做二相PSK实验时,必须把开关K700的1脚与2脚相连接,做二相DPSK实验时,必须把开关K700的2脚与3脚相连接。
六、实验报告要求
1. 根据实验结果,作出DPSK已调信号的波形。 2. 简述DPSK调制电路的工作原理及工作过程。 3. 画出二相PSK调制器详细框图,并简述其工作过程。
4. 根据实验测试记录(波形、频率、相位、幅度以及时间对应关系)依次画出 工作波形,并给以必要的说明。
5. 写出完成本次实验后的心得体会以及对本次实验的改进意见。
实验五
2PSK(2DPSK)解调实验
一、实验目的
1. 掌握二相(PSK、DPSK)解调器的工作原理及系统电路组成。 2. 熟悉二相相对相移与绝对相移的转换方法。 3. 掌握载波锁相环技术指标的测试方法。
4. 掌握二相(PSK、DPSK)系统的重要性能指标的测试方法。
5. 了解以二相(PSK、DPSK)解调的基带数字信号中提取同步的方法。
二、实验仪器仪表
1. 信号源
一台 2. 双踪示波器
一台 3. 频率计
一台 4. 万用表
一块 5 通信原理实验箱二
一台
三、实验电路
本实验相关实验电路如下所示:
图5-1为二相PSK(DPSK)解调器电路图; 图5-2为电路原件分布图。
图5-1 二相PSK(DPSK)解调器电路
图5-2 电路原件分布图
四、实验内容
1. 将实验4中二相PSK(DPSK)的电路调整好后,再将本实验电路调整到最佳状态,逐一测量T800~T856各点处的波形,画出波形图并作记录,注意时间、相位、幅度之间的关系。 2. 观察眼图,并作记录分析。
五、实验报告要求
1. 根据实验结果,画出PSK(DPSK)相干解调的波形图。 2. 画出实验结果,作出接收系统中的同步带与捕捉带的范围。
3. 根据实验结果,记录并画出眼图的波形图,并表明眼图的各项参数。 4. 写出完成本次实验后的心得体会以及对本次实验的改进意见。
实验六
脉冲编码调制(PCM)及系统实验
一、实验目的
1. 加深对PCM编码工作过程的理解。 2. 掌握PCM编、译码的时序关系。
3. 熟悉PCM编、译码专用芯片的使用方法及其要求。 4. 了解PCM系统的工作过程。
二、实验仪器仪表
1. 双踪示波器
一台
一台
2. 通信原理实验箱一
一台 3. 低频信号源
三、实验电路
本实验相关实验电路如下所示:
图6-1为PCM编译码电路布局图,图6-2为PCM编译码电路图。
6-1 PCM编译码电路布局图
图6-2 PCM编译码电路图
21
四、实验内容
PCM编码实验
1.在不加信号的情况下,用双踪示波器测量T301~305各测量点处的波形,仔细观察。
2. 从实验一信号发生器系统单元中输入1KHz单音正弦信号至SIN300中,再测量T301~305中各点波形,画出各点波形并分析其相位关系。
3. 从外加信号发生器中输入一正弦信号至SIN300中,重复上述“2”的过程及步骤。
4. PCM解码系统实验将S300
1、2连接,在上述“1”、“2”、“3”的基础上,继续测量T301~305各测量点处的波形,并画出波形,作详细分析。
五、实验报告要求
1. 画出实验电路方框图,叙述其工作过程。
2. 画出实验过程中各测量点的波形图,注意对应相位关系。 3. 写出完成本次实验后的心得体会以及对本次实验的改进意见。
22
实验七
增量调制编码系统实验
一、实验目的
1. 掌握增量调制编码的基本原理。
2. 理解不同速率的编码,以及低速率编码时的输出波形。
二、实验仪器仪表
1. 双踪示波器
一台 2. 低频信号源
一台 3. 万用表
一块 4. 通信原理实验箱一
一台
三、实验电路
本实验相关实验电路如下所示:
图7-1为增量调制编码电路布局图,图7-2为增量调制编码电路图。
图7-1 增量调制编码电路布局图
23
图7-2 增量调制编码电路
24
四、实验内容
1. 在不加信号的情况,用双踪示波器测量T401~T407各测量点的波形。 2. 用低频信号源输出信号,产生一频率为800KHz,幅度为2.5V的信号,输入插座SIN400中,再测量T401~T407各点波形,并画出波形。
3. 输入音频信号保持f=800KHz不变,而改变信号幅度,再重复逐点观测T401~T407各点波形。
4. 输入音频信号保持幅度不变,而改变信号的频率,再重复逐点观测T401~T407各点波形。
五、实验报告要求
1. 画出实验电路的实验方框图,并作简要叙述。
2. 画出实验内容2中的各点波形图,注意对应时间相位关系。 3. 结合理论分析说明在处理各点波形时,所发生的各种现象。 4. 写出本次实验的心得体会,以及对本实验有何改进意见。
25
实验八 增量调制译码系统实验
一、实验目的
1. 加深理解连续可变斜率增量调制系统的电路组成与基本工作原理。 2. 熟悉对增量调制编译码电路工作过程的监测和测试方法
3. 熟悉增量调制系统在不同工作频率、不同信号频率和不同信号幅度下跟踪输入信号的情况。
4. 掌握测量系统的过载特性、编码动态范围以及最大量化信噪比的测试方法。
二、实验仪器仪表
1. 双踪示波器
一台
2. 低频信号源
一台 3. 万用表
4. 通信原理实验箱一
一块
一台
三、实验电路
本实验相关实验电路如下所示:
图8-1为增量调制译码电路布局图,图8-2为增量调制译码电路图。
图8-1 增量调制译码电路布局图
26
图8-2 增量调制译码电路图
四、实验内容
1. 在增量调制系统的发送端输入一音频信号,频率为800Hz,幅度为2V左右,使发送端的编码器正常工作,用示波器测量该增量调制系统译码器电路
27
T500~T503各点波形,并作记录,注意相位关系。
2. 在实验内容1中,保持输入信号的频率不变,而改变输入信号的幅度,再测量T500~T503各点波形,并能识别正常编码,起始编码与过载编码时的波形。 3. 测量系统的过载特性,并绘制系统的过载特性曲线。 4. 测量系统的编码动态范围。 5. 测量系统的最大信号量化噪声。
五、实验报告要求
1. 画出实验系统总方框图。
2. 画出实验内容1中各测量点的波形。
3. 列表并画出过载特性曲线,并根据实验内容要求在相应的表格中填入测试记录数据值。
4. 总结话音通信实验时的实验体会,并写出在实验过程中遇到的各种问题。 5. 在通话的质量方面,该实验系统如何改进方能提高话音的质量?
28