1.结果截图
2.结果讨论
用FASI通过标定结果获得的结果图如图3所示HALCON如图4所示。由于用手机拍照,相机内部参数不完整,实验结果仅讨论焦距。手机拍照时的真实焦距为25mm,比较两次实验结果的相对误差,FASI与真实焦距的相对误差为7.228%,HALCON与真实焦距的相对误差为11.384%。就焦距数据而言,FASI精度较高。
3.食用方法
写入提取的特征ImageCoordinate.txt将特征对应的真实世界坐标写入文件WordCoordinate.txt,运行testData.m即可。
4.代码
专业课老师给的代码
testData.m
clc clear all x=load('WordCoordinate.txt'); X=load('ImageCoordinate.txt'); Xf=X(:,1); %图像横坐标表示像素 Yf=X(:,2);%图像纵坐标表示像素
xw=x(:,1); yw=x(:,2); [M,N]=size(x); zw=zeros(M,1); Ncx=1;%可理解为平面像素的采样频率,一般设置为1 Nfx=1; Cx=640; %Cx,Cy就像平面中心像素的位置一样U0,V0 Cy=512;
dx=0.0052;%每个像素的物理尺寸 dy=0.0052; sx=1;%相当于误差项,也设置为1 [R, T, f, k1] = Tsai(Xf, Yf, xw, yw, zw, Ncx, Nfx, dx, dy, Cx, Cy, sx); a=atan(-R(2,3)/R(3,3)); a1=a*180/pi; c=atan(-R(1,2)/R(1,1)); c1=c*180/pi; q=cos(c); b=atan(R(1,3)*q/R(1,1)); b1=b*180/pi;
Tsai.m
% [R, T, f, k1] = Tsai (Xf, Yf, xw, yw, zw, Ncx, Nfx, dx, dy, Cx, Cy, sx) % % ********************************************************************************************** % ******* Calibrating a Camera Using a Monoview Coplanar Set of Points ******* % ********************************************************************************************** % 6/2004 Simon Wan % simonwan@hit.edu.cn % % Note: Xf, Yf, xw, yw, zw are all column vectors % % (xw, yw, zw) is the 3D coordinate of the object point P in the 3D world coordinate system % (x, y, z) is ths 3D coordinate of the object point P in the 3D camera coordinate system % (X, Y) is the image coordinate system centered at Oi where is the intersection of the optical center axis z and the front plane % (Xu, Yu) is the image coordinate of (x, y, z) if a perfect pinhole % camera model is used(图像坐标用相机坐标表示) % Xu = f * x / z (4a) % Yu = f * y / z (4b) % (Xd, Yd) is the actual image coordinate which differs from (Xu, Yu) % due to lens distortion实际图像坐标(增加畸变) % (Xf, Yf) is the coordinate used in the computer, is the number of % pixels for the discrete image in the frame memory(像素坐标) % R is the 3*3 rotation matrix % = [r1, r2, r3; r4, r5, r6; r7, r8, r9]; (2) % [x, y, z]' = R * [xw, yw, zw]' T (1) % T is the translation vector % = [Tx, Ty, Tz]' (3) % f is the effective focal length 焦距有效 % Dx = Xd*( k1*r^2 k2*r^4 ... ) P327 % Xd Dx=Xu (5a) % Dy = Yd*( k1*r^2 k2*r^4 ... ) P327 % Yd Dy=Yu &nbs; (5b) % r = (Xd^2 + Yd^2)^(0.5) P327 % k1 is the distortion coeffient % Xf = sx * dxp^(-1) * Xd + Cx (6a) % Yf = dy^(-1) * Yd + Cy (6b) % dxp = dx * Ncx / Nfx (6d) % dx is the center to center distance between adjacent sensor elements in X (scan line) diretion是X(扫描线)方向上相邻传感器元件之间的中心距离 % dy is the center to center distance between adjacent CCD sensor in the Y direction是相邻CCD传感器在Y方向上的中心距离 % Ncx is the number of sensor elements in the X direction是X方向上的传感器元件的数量,平面像素的采样频率 % Nfx is the number of pixels in a line as sampled by the computer是计算机采样的行中像素数,表明平面像素的采样频率 % sx is the uncertainty image scale factor是不确定性图像比例因子,相当于误差项,也设置为1 % X = (Xd * Nfx) / (dx * Ncx) P328 % X = Xf - Cx P328 % Y = Yf - Cy P328 % sx^(-1)*dxp*X + sz^(-1)*dxp*X*k1*r^2 = f*x/z (7a) % dxp*Y + dy*Y*k1*r^2 = f*y/z (7b) % r = ( ( sx^(-1)*dxp*X )^2 + (dx*Y)^2 )^(0.5) % sx^(-1)*dxp*X + sx^(-1)*dxp*X*k1*r^2 = f*(r1*xw + r2*yw + r3*zw + % Tx) / (r7*xw + r8*yw + r9*zw +Tz) (8a) % dy*Y + dy*Y*k1*r^2 = f*(r1*xw + r2*yw + r3*zw + % Tx) / (r7*xw + r8*yw + r9*zw +Tz) (8b) % Since the calibration points are on a common plane, the (xw, yw, zw) coordinate system can be chosen such that zw=0 and the % corigin is not lose to the center of the view or y axis of the camera coordinate system. Since the (xw, yw, zw) is user-defined % and the origin is arbitrary, it is no problem setting the origin of (xw, yw, zw) to be out of the field of view and not close % to the y axis. the purpose for the latter is to make sure that Ty is not exactly zero. % % REF: "A versatile camera calibration technique for high-accuracy 3D machine % vision metrology using off-the-shelf TV cameras and lens" % R.Y. Tsai, IEEE Trans R&A RA-3, No.4, Aug 1987, pp 323-344. % function [R, T, f, k1] = Tsai(Xf, Yf, xw, yw, zw, Ncx, Nfx, dx, dy, Cx, Cy, sx) % Stage 1 --- Compute 3D Orientation, Position (x and y): % a) Compute the distored image coordinates (Xd, Yd) Procedure: dxp = dx * Ncx / Nfx;
X = Xf - Cx; Y = Yf - Cy; Xd=sx^(-1)*dxp*(Xf-Cx); Yd=dy*(Yf-Cy); % b) Compute the five unknowns Ty^(-1)*r1, Ty^(-1)*r2, Ty^(-1)*Tx, Ty^(-1)*r4, Ty^(-1)*r5 % r1p=Ty^(-1)*r1; % r2p=Ty^(-1)*r2; % Txp=Ty^(-1)*Tx; % r4p=Ty^(-1)*r4; % r5p=Ty^(-1)*r5; A=[Yd.*xw Yd.*yw Yd -Xd.*xw -Xd.*yw]; B=Xd; C=A\B; r1p=C(1); r2p=C(2); Txp=C(3); r4p=C(4); r5p=C(5); clear A B C; % c) Compute (r1,...,r9,Tx,Ty) from (Ty^(-1)*r1, Ty^(-1)*r2, Ty^(-1)*Tx, Ty^(-1)*r4, Ty^(-1)*r5): % 1) Compute |Ty| from (Ty^(-1)*r1, Ty^(-1)*r2, Ty^(-1)*Tx, Ty^(-1)*r4, Ty^(-1)*r5): C=[r1p, r2p; r4p, r5p]; Sr=r1p^2 + r2p^2 + r4p^2 + r5p^2; if rank(C)==2 Ty2=( Sr - (Sr^2-4*(r1p*r5p-r4p*r2p)^2)^(0.5) )/(2*(r1p*r5p-r4p*r2p)^2); else z = C(abs(C) > 0); Ty2 = 1.0 / (z(1)^2 + z(2)^2); end Ty = sqrt(Ty2); clear C Sr Ty2 z % 2) Determine the sign of Ty: [ymax i] = max(Xd.^2 + Yd.^2); r1 = r1p*Ty; r2 = r2p*Ty; r4 = r4p*Ty; r5 = r5p*Ty; Tx = Txp*Ty; x = r1*xw(i) + r2*yw(i) + Tx; y = r4*xw(i) + r5*yw(i) + Ty; % if (sign(x) == sign(Xf(i))) & (sign(y) == sign(Yf(i))), if (sign(x) == sign(X(i))) && (sign(y) == sign(Y(i))), Ty = Ty; else Ty = -Ty; end clear ymax i x y % 3) Compute the 3D rotation matrix R, or r1, r2,...,r9 r1 = r1p*Ty; r2 = r2p*Ty; r4 = r4p*Ty; r5 = r5p*Ty; Tx = Txp*Ty; s = -sign(r1*r4 + r2*r5); R=[r1, r2, (1-r1^2-r2^2)^(0.5); r4, r5, s*(1-r4^2-r5^2)^(0.5)]; R = [R(1:2,:); cross(R(1,:), R(2,:))]; r7 = R(3,1); r8 = R(3,2); r9 = R(3,3); y = r4*xw+r5*yw+Ty; w = r7*xw+r8*yw; z = [y -dy*Y] \ [dy*(w.*Y)]; f = z(1); if f < 0 R(1,3) = -R(1,3); R(2,3) = -R(2,3); R(3,1) = -R(3,1); R(3,2) = -R(3,2); end r3 = R(1,3); r6 = R(2,3); r7 = R(3,1); r8 = R(3,2); clear s y w z % 2) Stage 2 --- Compute Effective Focal Length, Distortion Coefficients, and z Position: % d) Compute an approximation of f and Tz by ignoring lens distortion: y = r4*xw+r5*yw+Ty; w = r7*xw+r8*yw; z = [y -dy*Y] \ [dy*(w.*Y)]; f = z(1); Tz = z(2); % Compute the exactly solution for f, Tz, k1: params_const = [r4 r5 r6 r7 r8 r9 dx dy sx Ty]; params = [f, Tz, 0]; % add initial guess for k1 [x,fval,exitflag,output] = fminsearch( @Tsai_8b, params, [], params_const, xw, yw, zw, X, Y); f = x(1); Tz = x(2); k1 = x(3); T=[Tx, Ty, Tz]'; % fval the value of the objective function fun at the solution x. fval % exitflag that describes the exit condition of fminsearch % >0 Indicates that the function converged to a solution x. % 0 Indicates that the maximum number of function evaluations was exceeded. % <0 Indicates that the function did not converge to a solution. exitflag % output that contains information about the optimization % output.algorithmThe algorithm used % output.funcCountThe number of function evaluations % output.iterationsThe number of iterations taken output
Tsai_8b.m
% f = Tsai_8b(params, params_const, xw, yw, zw, X, Y) % % ********************************************************************************************** % ******* Calibrating a Camera Using a Monoview Coplanar Set of Points ******* % ********************************************************************************************** % 6/2004 Simon Wan % simonwan@hit.edu.cn % % Note: This is not called directly but as a function handle from the "fminsearch " % function f = Tsai_8b(params, params_const, xw, yw, zw, X, Y) % unpack the params f = params(1); Tz = params(2); k1 = params(3); % unpack the params_const r4 = params_const(1); r5 = params_const(2); r6 = params_const(3); r7 = params_const(4); r8 = params_const(5); r9 = params_const(6); dx = params_const(7); dy = params_const(8); sx = params_const(9); Ty = params_const(10); rsq = (dx*X).^2 + (dy*Y).^2; res = (dy*Y).*(1+k1*rsq).*(r7*xw+r8*yw+r9*zw+Tz) - f*(r4*xw+r5*yw+r6*zw+Ty); f = norm(res, 2);
5.结果:
运行代码后,结果及其误差分析会在当前目录下生成txt文件。