激光多普勒振动测量技术简介
这份报告方便大家以后找作业资料。反正我已经结课了,大家可以随便用我的东西。
目录 1 振动测量的意义 3 1.1 振动的原理 3 1.2 振动的危害 3 1.3 振动测量的意义 4 2 振动测量方法简介 5 2.1 激光三角法 5 2.1.1 特点: 5 2.1.2 原理: 6 2.2 计算机视觉 7 2.2.1 分类 7 2.2.2 基于视频相位的振动测量方法 7 2.3 数字全息技术 9 2.3.1 特点: 9 2.3.2 原理: 10 2.4 激光多普勒技术 12 2.4.1 基本原理 12 3 激光多普勒测振技术发展现状 13 4 激光多普勒测振技术在工程中的应用 16 4.1 振动测量机械系统 16 4.2 农产品质量检验 16 4.3 运动轨迹测量 16 4.4 建筑振动测量 16 参考文献 17
振动测量的意义 振动的原理 振动是一种动态的往复运动,机械物体在某些情况下会振动,机械振动的原因是机械结构的不平衡或力不平衡和机械部件的碰撞。 振动位移:振动位移是指质量物体的运动距离,当质量块振动时,是质量物体的上下运动距离。位移单位 m 表示。振动物体的速度和加速度可以通过振动位移随时间的变化获得。如图所示 2.1 所示。可以是静态位移,也可以是动态位移。通常我们测试动态位移。角位移、线位移等。 振动的危害 对于工厂、医院、实验室等安装精密仪器并对振动敏感的区域,道路和铁路交通总是不可避免地通过这些区域。当外部振动达到一定强度时,这些区域的精密仪器将受到影响,无法正常使用。例如,微纳米实验室的光学测量仪器的测量精度在微纳米水平,对外部环境的要求很高。几微米的位移偏差可能会导致测量或开发产品失败。或者比如 PM2.5 颗粒对环境有很大的影响果在科研过程中需要测量这些颗粒,微米级振动会对结果产生很大影响。北京的大多数研究机构或大学都分布在靠近地铁或轨道交通的地方。地铁通过时产生的振动位移将对研究机构高精度仪器设备的正常运行产生一些不利影响。 振动测量的意义 振动测量是指在实验室或振动现场测量振动响应、动态特性参数或载荷识别。振动响应包括振动系统的位移、速度、加速度、振动物体的应变和应力;振动动态特性参数包括振动各阶段的模态频率、振动系统频率响应、模态阻尼和振动脉冲响应;振动环境下的载荷识别包括随机载荷、脉冲载荷、地震谱、湍流、道路、海浪等频谱。 在测量振动时,一般可以获得大量的原始数据,必须经过数值处理才能应用于工程设计。测试获得的原始数据是时间过程的物理量,一般分为三种情况:瞬态、随机和周期。通过对时域、频域和振幅的分析,可以获得各种表示振动响应的参数信息。 随着现代工程技术的快速发展,特别是航空、航空航天、机械制造等技术的发展,需要对航空发动机叶片振动、炮管振动、微机电系统振动等振动进行高精度测量。振动测量是现代工程技术的重要检测和分析手段,在交通、建筑、土木工程、环保、机械等领域也发挥着重要作用。 振动测量设备从接触式发展到非接触式,从单点测量到面扫描测量和三维振动测量,然后提出了三维扫描振动测量。
振动测量方法简介 激光三角法 特点: 基于接触式压电加速度传感器,传统的振动测量方法将振动信号转换为电信号 信号处理分析显示了振动的加速度、速度和位移值。如果测量小物体的振动,附加加速度传感器的质量往往会影响被测物体的振动,导致测量误差。随着工业测量领域的不断扩大,测量精度和速度的不断提高,传统的接触测量已不能满足工业的需求。新型非接触式、高精度、实时振动测量技术的设计和开发一直是工程科技领域的重要课题和任务。激光振动测量采用广泛的光学折射和反射效应,以传感器的激光束为发射光源,对振动测量体进行点测量、线测量(二维测量)或三维测量(轮廓测量)。同时,通过内置软件的一系列算法处理收集到的测量数据,得到测量体振动的相关参数。基于光学干涉原理,激光测振可应用于许多其他测振方法无法测量的任务中。其频率和相位响应都很好,足以满足高精度、高速测量的应用。非接触测量还可以检测液体表面或非常小物体的振动 还可以弥补接触式测量方法无法测量大振动的缺陷。在一些复杂或恶劣的环境下,很难准确定位和测量普通振动仪,而激光三角测量可以在不受距离、空间和湿度影响的大距离内测量。测量结果可以通过软件数据处理直接与振动烈度标准和频率标准进行比较和判断,极大地方便了测量人员的操作。 原理: 半导体激光器LD发射透镜的激光L在被测物体表面O处汇聚,O 点在空间中的散射光通过接收透镜 L2 聚集在光电检测器上 E 上形成光点 O’。当入射光点和光学结构相对于入射光轴的方向偏移振动位移 z 时,在 E 感光表面的成像光点会出现 z从而改变光电检测器的输出电信号。可以通过检测信号的变化来获得 z’,再通过 z’与 z 振动位移的关系类型 z 因为 z’与 z 三角关系可以计算出来,所以这种方法叫三角法。 在设计条件下,根据正弦定理β和角θ都比较小,所以可以得到: z/sinx=(a-z)/sinβ z’/sinx=(b z’)/(sin(π-θ)) 由公式 3.1 和 3.2 联立可得: z=az’sinθ/(z^’ (sinβ sinθ) bsinβ) 在角 β与角θ都是小时,可以近似地认为sinβ sinθ=sin(β θ)因此,上式可以转换为: z=az’sinθ/(z^’ sin(β θ) bsinβ)
a是入射光点,即激光在物体的照射位置接收透镜L2的距离;b为反 射光通过接收透镜 L2 到传感器感光面中心位置的距离;z沿激光入射方向产生的位移变化;z′由于物体沿入射方向的位移变化 z而导致的像光点在传感器感光面相对于测振仪基准点的变化位移,传感器感光面的中心位置是测振基准点:θ反射光与传感器光表面的夹角;β激光照射方向与光反射方向的夹角;z′输出数字信号可通过检测位置传感器转换电路获得。
计算机视觉 分类 视觉测振法包括点跟踪法、数字图像相关法和光流法。点跟踪法(Point Tracking, PT)振动测量是通过在测量对象的结构表面设置高对比度或反射光学目标来完成测量对象的振动测量。单点或多点的振动数据或多点的振动数据。数字图像相关法(Digital Image Correlation,DIC)另一种视觉振动测量方法。该方法需要在被测目标表面设置散斑图像,用相机收集被测目标振动时的散斑图像,然后通过图像处理获取振动数据。与点跟踪法相比,数字图像相关法可以测量结构上更大的区域甚至观众的振动。点跟踪法和数字图像相关法需要在结构表面布置光学目标或散斑图。对于一些大型测量目标,布局需要很多时间,而一些结构表面不方便布局。光流法不需要在测量目标表面进行任何标记,运动信息结构的自然图像特征提取运动信息。Lucas-Kanade (LK)[14]和Horn-Schunck(HS) [15]是两种主要的传统光流法。 综上所述,虽然点跟踪法和数字图像相关法可以进行三维振动测量,但需要在被测对象上设置光学标记。传统的光流方法解决了标记问题,但对噪声更敏感。此外,虽然基于视频相位的振动测量方法不需要设置光学标记和强大的鲁棒,但只能获得二维振动信息。 基于视频相位的振动测量方法 三维振动测量首先需要获得二维振动测量数据。二维振动测量采用基于视频相位的振动测量方法[22-23]。基于视频相位的振动测量方法是基于傅里叶变换原理。从空间域到频域的转换可以实现傅里叶的转换,这表明空间域中的任何运动都会导致频域中的相位变化。在图像处理中,图像空间域的像素运动也可以反映在图像频域的相位上。 然而,傅里叶变换只反映了信号的整体特征,通常用于估计整体运动。 Gabor对局部运动进行分析。Gabor 将视频的每帧图像转换为复频域,从而更准确地表示局部运动信息。Gabor 滤波器是 Gabor 转换的重点。二维在空间域 Gabor 滤波器是高斯函数调制的正弦函数,可表示为: g(x,y;λ,θ,ψ,σ,γ)=exp(-(x_θ2 γ2 y_θ2)/(2σ2 ))exp(i(2π x_θ/λ ψ)) 式中: ? 是正弦波的波长; 调谐函数的相位偏移; ? 是决定 Gabor 函数形状的空间长宽比; 是高斯函数的标准差决定了Gabor滤波器核可接受面积大,θ∈(0 ,360)表示Gabor滤波核的方向,i为虚数单位,x和y是图像的空间坐标,xθ和yθ它是包含方向信息的空间变量,具体表示为: 测量视频由多帧图像组成。图像空间域信息,即图像强度。设图像在 t 图像强度为I(x,y,t),视频的第一帧是参考帧,图像强度为 I(x,y, t),第二帧是运动帧,图像强度是连续两帧图像之间的时间间隔。通过图像信息和二维 Gabor 滤波器的卷积运算可以计算图像强度信息 I(x,y,t) 转换为频域信息 F( x, y,t) : 式中: u 和 v 图像中像素点在水平和垂直方向上的瞬时速度分别表示。 以计算水平方向的运动信息为例。θ=0 运动帧图像的频域信息如下: 两种相减可得相位差: 从公式中可以看出水平方向的运动 x与相位差相比。同样,通过改变 Gabor 滤波器的方向是垂直移动y,从而获得像素二维位移数据。最后,通过计算图像中相同深度下物体的实际长度与图像中跨越的像素数量的比例数据,设置为尺度因子s 。将尺度因子乘以像素的位移数据,将像素转换为实际长度单位。 数字全息技术 特点: 工程中有许多动态变形和振动的实际例子,如冲击后应力波在结构中的传播、湍流压力引起的油管疲劳损伤、摩擦下汽车制动器的尖叫、运行中的航空发动机和各种涡轮叶片裂纹引起的噪声上升、动态平衡下降等。传统的动态变形和振动的测量手段是使用传感器的方法,其缺点是只能提供逐点的测量信息。光学的方法则无需逐点布置传感器,可以无接触地对物体表面进行动态检测。脉冲数字全息技术因为采用极短的曝光时间(10ns),使人们在不稳定的实验环境条件下作光学测量成为可能。它可用于非谐振波分析、振幅测量,高速状态下的测量,随机过程,瞬态过程等不可重复性的动态测量场合。通过两次脉冲全息记录的相关性分析,可获得被测物体在两次记录之间的变化情况。一般用10~100μS的脉冲时间间隔,能够满足许多实验室环境以外的应用需要。 原理: 全息干涉图中的光强I可表示为: 式中:u代表物光波,r代表参考光波。*代表复共轭。全息图的最大空间频率fmax由参考光源和被测物体上最远点之间的夹角决定: 式中:入是相干光源的波长,a是参考光源和物体之间的夹角。 感光胶片能够分辨的频率可高达5000线/mm,而CCD芯片一般在100200线/mm(5xμs10xl0μs敏感元件尺寸),由于CCD芯片的空间分辨率受到限制,在布置光路时,a角只能在几度之内。如图1的离轴光路中,参考光源可放置在被测物头当被测物旁没有足够的空间时,我们可以借助一块偏振反射玻璃,从而形成更简易实用的光路布置.如图2所示。将偏振反射玻璃放在被测物前作为斗考光源的另一好处是改善了物体边缘的检测效果这是离轴光路所难以做到的。 按图1布置的光路,a角的大小取决于CCD-片中敏感元件的尺寸。根据信号采样和恢复理论.要记录比较完整的全息信息,采样频率应高于两仁的信号频率,每一干涉条纹至少应有两个采样点,像素间隔为10μs,fmax=O.05 μm-1 。λ=632.8,由公式(2)得到amax三1.81°。
为测量瞬态过程和振动,需要使用大功率多脉冲激光器。它能在几微秒的时间间隔发射两次高能脉冲光照,使我们在时刻t1、t2分别获得光脉冲记录。 数字化重建采用Fresnel-Kirchhoff积分方法,通过平面参考照射光波模拟衍射图像。其连续和离散的形式如下: 其中,U(x,y)全息平面的光强,v(ξ,η)是计算产生的衍射区,k=2π/λ是与光源有关的波数。 公式(4)表明与位移或变形有关的相位项可以被同时求解出。
激光多普勒技术 LDV是利用激光多普勒效应和外差干涉原理进行 的精密振动测量技术,具有精度高、动态响应快、测量范围大、非接触性测量、抗电磁干扰、对横向振动干扰不敏感等优点,因此本文选取激光多普勒方法进行振动检测。单点的LDV只能测量沿着激光出射方向的振动,扫描LDV可测量一定区域面内的振动。而在实际工业环境中,往往需要获取某个被测物一定区域三维振动的信息,为后期的模态分析提供数据准备。因此,三维扫描LDV显 得很有必要。 基本原理 本三维扫描系统由3台单点LDV、3套振镜、2套视频采集系统及信号解调、数据采集等组成,3台单点LDV布置在空间中的3个位置,在3台单点LDV前方各布置1套振镜,用于实现激光的偏转,视频采集系统用于控制3台单点LDV的定点同时测量以及空间相对位置关系的计算。3台LDV分别从各自振镜出射与世界坐标系x、y、z的夹角分别为为αkj、βkj、γkj,k=1,2,3…;j=1,2,3。沿着激光出射方向,测得的速度为νkj k=1,2,3…;j=1,2,3;进而得到三维振动信息(νxk,νyk,νzk,k=1,2,3…)。 图1为三维测量的原理图,第k点处νk1、νk2、νk3通过算法处理得到空间矢量,分别用νxk、νyk、νzk表示,写成如下形式: 通过变换,得到: 该点的振动信息便可以在世界坐标系中用3个正交 的分量表示。在上式中,νk1、νk2、νk3为单点LDV测量的值。 只要确定夹角便能计算出三分量,而夹角的测量可 通过双目立体视觉[9-15]重建三维技术得到,νk1、νk2、νk3为沿着激光出射方向测得的振动分量,αkj、βkj、γkj为νkj与xj ,yj ,zj 的夹角,夹角可通过以下公式计算出: 其中:Xk、Yk、Zk为第k个点在世界坐标系中的坐标;Xkj、Ykj、Zkj为激光从第j个LDV前端振镜出射的激光坐标。Xk、 Yk、Zk可通过双目立体视觉得到,双目立体视觉目前已是成熟技术,广泛应用在三维重建领域;Xkj、Ykj、Zkj可通过反 馈的振镜偏转角度计算得出。
激光多普勒测振技术发展现状 激光技术与振动测量技术经过了数十年的不断发展,形成了多种成熟的测量技术,有:散斑干涉法,莫尔条纹光栅法,激光多普勒测量法等多种光学测振技术。其中,激光多普勒测振技术有着操作方法简单、测量范围大、抗干扰能力强、测量精度高、检测用时短等优点。目前,机械制造业对于激光多普勒测振技术有着极大的需求量,该技术对于振动的测量,不会受到压力、温度、湿度、表面粗糙度等外界因素的影响。 十九世纪四十年代,奥地利著名科学家多普勒(Doppler)提出了关于多普勒效应的理论:当观测者在接收一束光波时,波的波长和频率不是固定的,观测者在不同的位置观测出的结果是不同的。当观测者逐渐靠近波源时,接收到的频率与之前相比变得更高,波长变长;当观测者逐渐远离波源时,频率与波长的变化与之前相反。由此可知,观测频率与观察者和波源之间的相对运动有关,可以通过测量波的变化,得到波源的运动状况。而光也具有波的特性,同样适用于多普勒效应理论。 在 1964 年,康明斯(Cummins)与耶和(Yeh)首次使用了多普勒测速仪(Doppler Velocimeter)利用流体中细微粒子的多普勒效应,测得了水的流速,这是多普勒测量技术实际应用的开端。在其后的五十多年中,许多物理学家竞相开展了对于多普勒测量技术的研究,形成了一系列技术成果。随着光学技术的进步,美国物理学家希尔多·梅曼(Theodore H. Maiman)发明了世界上的第一台激光器。科学家们将激光器与多普勒测量测量仪器相结合,研发出了激光多普勒测速仪(Laser Doppler Velocimeter,LDV)。但是由于当时的技术条件所限,其研制的激光测速装置结构简单、精度较低,并且难以实时获得数据。随着科技发展,光学元件、电子器件以及处理软件不断换代更新。上世纪八十年代开始,激光多普勒测速装置由于集成光学元件的广泛应用和信号处理系统的改善,其稳定性及测量精度更高、处理速度更快,可以测得瞬时速度。随着激光多普勒测速技术的不断优化与发展,激光多普勒测量技术的应用范围不断扩大,激光多普勒测速技术的测量对象从流体流速拓展到了固体的运动状态。测量范围由仅能测量速度,拓展到了振动测量、距离测量等领域。 纵观激光多普勒测量技术的发展历史,可以分为以下几个阶段。 二十世纪六十年代,为激光多普勒测量技术的起步阶段。这一阶段的激光多普勒测速装置由简单的光学装置组合而成。由于大多数激光多普勒测量装置还停留在摸索阶段,理论和技术均不成熟,测量结果难以校准,无法得到广泛应用。这一阶段具有代表性的技术成果是中科院长春所研制出了我国第一台激光多普勒测速仪。但是,该设备由于成本较高,操作复杂,并未得到推广使用。 二十世纪七十年代,激光多普勒测量技术进入了以新技术融合为代表的理论和技术突破阶段。此时精密设备的研制和应用对测量技术提出了新的、更高的要求,测量系统的光学结构和信号处理水平有了新的突破,激光技术也日臻成熟。发达国家开始重视激光多普勒测量技术的研究,研究工作步入正轨,取得大量新的研究成果。在测量仪器方面,其光路结构也变得更为科学,并且加入了校准装置,准确度大幅提高,测量结果更为可靠。再加上运算放大器、偏振分光镜、滤波电路、声光频移器等高精尖设备添加到了激光多普勒测量系统之中,使得该系统的信号处理与抗干扰能力进一步增强。 二十世纪八十年代至今,激光多普勒测量技术进入以推广应用为标志的成熟期。光学器件、信息技术、信号处理技术的进步,以及测量元件的高度集成化,为激光多普勒测量技术的推广应用奠定了坚实基础。激光多普勒测量技术开始向着实用化发展,越来越多的激光多普勒测量仪器进入了人们的视野之中。激光多普勒测速仪从仅能测量液体流速,发展到可以对于固体的运动速度进行测量。在激光多普勒测速技术高速发展的同时,在 1983 年,世界上第一台激光多普勒测振仪诞生于英国的南安普顿大学。激光多普勒测振仪的发明表明了,激光多普勒测量不仅能够测量物体的运动速度,还可以用于其他测量领域。经过了数十年的发展,激光多普勒测振技术,已经从单光束测量,拓展到了三维激光测量,测振系统的性能、稳定性和精度都不断提升,目前在各个行业中都有着极大的需求,各个国家的科学家们也投入到激光多普勒测振仪的研究之中。近年来,随着计算机技术的不断发展,激光多普勒测振系统逐渐向数字化和商品化的方向发展。激光多普勒测量技术已经越来越贴近于生产科研和社会生活。 总而言之,激光多普勒测振技术从出现至今,得益于信号处理技术、光学器件技术和激光技术等相关技术的不断进步,正向着高性能、高稳定性、智能化、集成化、小型化的方向不断迈进。
激光多普勒测振技术在工程中的应用 机械系统振动测量 利用多普勒效应和激光测振技术研发的激光测振仪是非接触数字便携式测量仪器,集先进的光学测量技术和数字信号处理技术于一体,重量轻,方便携带、测量速度快、精度高、图形直观、可数字化存储、分析和处理。 利用激光测振技术研发的扫描式激光测振仪采用短波红外激光,可对结构的振动进行可视化的测试和分析,进行工件变形分析或模态分析。通过预先设定的测量点,激光测振仪可对整个被测面进行扫描式的测量。
农产品品质检测 通过频谱分析方法对激光多普勒振动信号和激振信号进行分析,根据得出的幅频响应第2共振频率、农产品质量和粘弹特性之间的关系,计算出弹性指数和质地指数,预测农产品的坚实度和成熟度。通过准确地检测农产品品质, 为采后保存、分期销售、预测产品货架期以及产品分级提供可靠的依据。
运动轨迹测量 激光测振系统,可以记录被测体在振动过程中的运动轨迹,并用最大值减去最小值得到振幅。当振幅超过界定值时,可通过软件输出报警信号。该系统采样频率高,能精确还原被测体运动轨迹。使用各种滤波器,还可使测量结果更加稳定。
建筑物振动测量 在建筑工程中,利用激光多普勒测振仪实时监控建筑物、桥梁、大坝等工程设施的振动情况,保证施工及运行的安全。 参考文献 [1]宋耀东,杨兴,刘志方,刘红魏,宋云峰.基于激光多普勒技术的三维扫描测振研究[J].机械工程师,2018(04):150-152+159. [2]张朋举,孙利民. 激光三角法测量振动[A]. 中国力学学会.力学与工程应用(第十六卷)[C].中国力学学会:河南省力学学会,2016:4. [3]张朋举. 基于一维PSD位置传感器激光三角法测量振动[D].郑州大学,2017. [4]彭聪,缪卫东,曾聪.基于机器视觉的轻型梁三维振动测量方法[J/OL].北京航空航天大学学报:1-8[2021-01-09].https://doi.org/10.13700/j.bh.1001-5965.2020.0211. [5]张于北,郭广平. 动态变形和振动测量中的脉冲数字全息技术初探[A]. 中国仪器仪表学会.第六届全国信息获取与处理学术会议论文集(3)[C].中国仪器仪表学会:《仪器仪表学报》杂志社,2008:3. [6]杨健坤. 激光多普勒测振技术的研究[D].青岛科技大学,2019. [7]储玉飞,刘东,王珍珠,吴德成,邓迁,李路,庄鹏,王英俭.多普勒测风激光雷达的基本原理与技术进展[J].量子电子学报,2020,37(05):580-600. [8]张文. 梨质地的激光多普勒测振无损检测方法[D].浙江大学,2016. [9]李路,庄鹏,谢晨波,王邦新,邢昆明.多普勒测风激光雷达的FP标准具透过率曲线校准及风场观测[J].光子学报,2020,49(11):204-214. [10]陈鸿凯. 激光多普勒微振动信号处理技术研究及硬件实现[D].中国科学院大学(中国科学院长春光学精密机械与物理研究所),2020.