资讯详情

three.js学习笔记(十六)——汹涌的海洋

介绍

现在我们知道如何使用着色器并绘制一些图案,所以这次我们必须用它来创造一个汹涌的海洋。 我们将使用调试面板来设置波动动画,并保持各种参数的控制。

初始场景

现在我们只用一个MeshBasicMaterial几何体具有128的平面x细分128。为了获得波浪效果,我们将为顶点设置动画,所以我们需要很多顶点。x128可能不够,但如果需要,我们会增加值。 在这里插入图片描述

基础

现在用着色器材料代替材料ShaderMaterial

const waterMaterial = new THREE.ShaderMaterial() 

虽然Webpack配置好支持glsl但是要创建文件。 在/src/shaders/water/vertex.glsl在路径下创建顶点着色器:

void main() { 
             vec4 modelPosition = modelMatrix * vec4(position, 1.0);     vec4 viewPosition = viewMatrix * modelPosition;     vec4 projectedPosition = projectionMatrix * viewPosition;     gl_Position = projectedPosition; } 

片元着色器也是如此/src/shaders/water/fragment.glsl

void main() { 
             gl_FragColor = vec4(0.5, 0.8, 1.0, 1.0); } 

它们被引入并用于着色器材料:

// ...  import waterVertexShader from './shaders/water/vertex.glsl' import waterFragmentShader from './shaders/water/fragment.glsl'  // ...  const waterMaterial = new THREE.ShaderMaterial({ 
             vertexShader: waterVertexShader,     fragmentShader: waterFragmentShader }) 

然后你会得到一个蓝色的平面:

波浪

我们将从巨浪开始。有什么比正弦波更能产生波浪?

在顶点着色器中,我们应该通过它sin(...)处理后的modelPositionx值来移动modelPositiony值:

vec4 modelPosition = modelMatrix * vec4(position, .0);
modelPosition.y += sin(modelPosition.x);

可以看到位移和波频率太高了,我们将使用uniform统一变量来获得对该值更好的控制。

下面将从波浪的高度开始。

波高

给着色器材质添加一个uBigWavesElevation的统一变量:

const waterMaterial = new THREE.ShaderMaterial({ 
        
    vertexShader: waterVertexShader,
    fragmentShader: waterFragmentShader,
    uniforms:
    { 
        
        uBigWavesElevation: { 
         value: 0.2 }
    }
})

在顶点着色器中使用:

uniform float uBigWavesElevation;

void main()
{ 
        
    // ...
    modelPosition.y += sin(modelPosition.x) * uBigWavesElevation;

    // ...
}

可以看到平面波浪高缓和许多: 我们应该使用一个elevation的变量而不是直接去更新y属性,在后面为波浪着色的时候将派上用场:

uniform float uBigWavesElevation;

void main()
{ 
        
    vec4 modelPosition = modelMatrix * vec4(position, 1.0);

    // 波浪高度
    float elevation = sin(modelPosition.x) * uBigWavesElevation;
    modelPosition.y += elevation;

    // ...
}

因为现在的海拔是在JavaScript中处理的,所以可以将之添加到Dat.GUI中:

gui.add(waterMaterial.uniforms.uBigWavesElevation, 'value')
	.min(0)
	.max(1)
	.step(0.001)
	.name('uBigWavesElevation')

波频

下面处理波浪发生频率,目前波浪高度只在x轴上进行改变,如果是一起控制z轴和x轴效果会更好。

给着色器材质添加一个值为Vector2的uBigWavesFrequency的统一变量:

// Material
const waterMaterial = new THREE.ShaderMaterial({ 
         
    vertexShader: waterVertexShader,
    fragmentShader: waterFragmentShader,
    uniforms: { 
        
        uBigWavesElevation:{ 
        value:0.2},
        uBigWavesFrequency: { 
         value: new THREE.Vector2(4, 1.5) } ,
    }
})

回到顶点着色器中,检索uBigWavesFrequency,注意这是个vec2类型,然后在sin(...)中使用并且只使用到它的x属性值:

// ...
uniform vec2 uBigWavesFrequency;

void main()
{ 
        
    // ...

    float elevation = sin(modelPosition.x * uBigWavesFrequency.x) * uBigWavesElevation;

    // ...
}

可以看到更像波浪,因为频率更高 接下来使用uBigWavesFrequencyy值在z轴上控制波浪。 我们可以乘以另一个sin(...)值:

float elevation = sin(modelPosition.x * uBigWavesFrequency.x) * sin(modelPosition.z * uBigWavesFrequency.y) * uBigWavesElevation;

可以看到波浪在z轴方向上也进行了移动 将波频的xy值都添加到调试面板中:

gui.add(waterMaterial.uniforms.uBigWavesFrequency.value, 'x')
    .min(0)
    .max(10)
    .step(0.001)
    .name('uBigWavesFrequencyX')
gui.add(waterMaterial.uniforms.uBigWavesFrequency.value, 'y')
    .min(0)
    .max(10)
    .step(0.001)
    .name('uBigWavesFrequencyY')

动画

给着色器材质添加一个uTime的统一变量:

const waterMaterial = new THREE.ShaderMaterial({ 
        
    // ...
    uniforms:
    { 
        
        uTime: { 
         value: 0 },
        // ...
    } 
})

tick()函数中更新该值:

const clock = new THREE.Clock()

const tick = () =>
{ 
        
    const elapsedTime = clock.getElapsedTime()

    // Water
    waterMaterial.uniforms.uTime.value = elapsedTime

    // ...
}

回到顶点着色器中检索并在sin()中使用uTime

uniform float uTime;
// ...

void main()
{ 
        
    // ...

    float elevation = sin(modelPosition.x * uBigWavesFrequency.x + uTime) * sin(modelPosition.z * uBigWavesFrequency.y + uTime) * uBigWavesElevation;

    // ...
}

波浪是有动画了,但是速度不够“汹涌”。 创建一个uBigWavesSpeed的统一变量并与uTime相乘:

const waterMaterial = new THREE.ShaderMaterial({ 
        
    // ...
    uniforms:
    { 
        
        // ...
        uBigWavesSpeed: { 
         value: 0.75 } 
    } 
})

// ...
gui.add(waterMaterial.uniforms.uBigWavesSpeed, 'value')
	.min(0)
	.max(4)
	.step(0.001)
	.name('uBigWavesSpeed')
// ...
uniform float uBigWavesSpeed;

void main()
{ 
        
    // ...

    float elevation = sin(modelPosition.x * uBigWavesFrequency.x + uTime * uBigWavesSpeed) *
                  	  sin(modelPosition.z * uBigWavesFrequency.y + uTime * uBigWavesSpeed) *
                  	  uBigWavesElevation;

    // ...
}

这里只是简单使用浮点型,如果要控制所有轴方向上的速度,可以使用vec2

颜色

虽然波浪效果已经有了,但是平面颜色需要做出改变。 我们要生成俩种颜色,一个用于深度,一个用于曲面。

要将颜色添加到调试面板有点复杂。

首先,我们要在调试面板实例化后立即创建一个debugObject对象:

const gui = new dat.GUI({ 
         width: 340 })
const debugObject = { 
        }

然后,在waterMaterial实例化前,我们可以创建这两种颜色作为debugObject的属性,并在俩个新的统一变量uDepthColoruSurfaceColor中使用它们,这些颜色将使用color类:

// Colors
debugObject.depthColor = '#0000ff'
debugObject.surfaceColor = '#8888ff'

// Material
const waterMaterial = new THREE.ShaderMaterial({ 
        
    vertexShader: waterVertexShader,
    fragmentShader: waterFragmentShader,
    uniforms:
    { 
        
        // ...
        uDepthColor: { 
         value: new THREE.Color(debugObject.depthColor) },
        uSurfaceColor: { 
         value: new THREE.Color(debugObject.surfaceColor) }
    } 
})

通过addColor()将之添加到调试面板,并当颜色改变时通过onChange()来更新waterMaterialuniform

gui.addColor(debugObject, 'depthColor')
    .onChange(() => { 
         waterMaterial.uniforms.uDepthColor.value.set(debugObject.depthColor) })
gui.addColor(debugObject, 'surfaceColor')
    .onChange(() => { 
         waterMaterial.uniforms.uSurfaceColor.value.set(debugObject.surfaceColor) })

回到片元着色器检索这俩个颜色并使用验证:

uniform vec3 uDepthColor;
uniform vec3 uSurfaceColor;

void main()
{ 
        
    gl_FragColor = vec4(uDepthColor, 1.0);
}

现在要做的是,当波浪较低则使用更多uDepthColor,波浪较高则使用更多uSurfaceColor。 为此我们将使用前面学的mix()函数,前俩个参数即为这俩种颜色,第三个参数将为波浪高度值,根据波浪高度来百分比混合颜色。

因此我们要使用到elevation,但是它位于顶点着色器中,为此要使用varying将其传输给片元着色器。

在顶点着色器中创建vElevation,并在main函数中赋值:

// ...

varying float vElevation;

void main()
{ 
        
    // ...

    // Varyings
    vElevation = elevation;
}

回到片元着色器,接收varying,创建一个根据高度vElevation混合mix()深度颜色和表面颜色的vec3类型变量color

uniform vec3 uDepthColor;
uniform vec3 uSurfaceColor;

varying float vElevation;

void main()
{ 
        
    vec3 color = mix(uDepthColor, uSurfaceColor, vElevation);
    gl_FragColor = vec4(color, 1.0);
}

这下你会看到颜色发生了细微的变化,但问题在于根据我们顶点着色器中的代码来看,vElevation的值范围只在-0.20.2之间。我们需要找到一个方法来控制并调整这个vElevation的值,只限于在片元着色器中。 为此,我们要再创建俩个uniform,分别是uColorOffsetuColorMultiplier,并将其添加到调试面板中:

const waterMaterial = new THREE.ShaderMaterial({ 
        
    vertexShader: waterVertexShader,
    fragmentShader: waterFragmentShader,
    uniforms:
    { 
        
        // ...
        uColorOffset: { 
         value: 0.25 },
        uColorMultiplier: { 
         value: 2 },
    } 
})

// ...
gui.add(waterMaterial.uniforms.uColorOffset, 'value')
	.min(0)
	.max(1)
	.step(0.001)
	.name('uColorOffset')
gui.add(waterMaterial.uniforms.uColorMultiplier, 'value')
	.min(0)
	.max(10)
	.step(0.001)
	.name('uColorMultiplier')

回到片元着色器中检索这俩个uniform,创建一个变量mixStrength用来存储vElevation与那俩个unifrom运算后的处理结果:

uniform vec3 uDepthColor;
uniform vec3 uSurfaceColor;
uniform float uColorOffset;
uniform float uColorMultiplier;

varying float vElevation;

void main()
{ 
        
    float mixStrength = (vElevation + uColorOffset) * uColorMultiplier;
    vec3 color = mix(uDepthColor, uSurfaceColor, mixStrength);

    gl_FragColor = vec4(color, 1.0);
}

之后可以慢慢调整直到获得你想要的颜色

小波纹

对于小型波纹,我们将使用柏林噪声。 同上次课,去该网址复制柏林噪声Classic Perlin 3D Noise by Stefan Gustavson到顶点着色器中,位于main函数上方: https://gist.github.com/patriciogonzalezvivo/670c22f3966e662d2f83

// Classic Perlin 3D Noise 
// by Stefan Gustavson
//
vec4 permute(vec4 x)
{ 
        
    return mod(((x*34.0)+1.0)*x, 289.0);
}
vec4 taylorInvSqrt(vec4 r)
{ 
        
    return 1.79284291400159 - 0.85373472095314 * r;
}
vec3 fade(vec3 t)
{ 
        
    return t*t*t*(t*(t*6.0-15.0)+10.0);
}

float cnoise(vec3 P)
{ 
        
    vec3 Pi0 = floor(P); // Integer part for indexing
    vec3 Pi1 = Pi0 + vec3(1.0); // Integer part + 1
    Pi0 = mod(Pi0, 289.0);
    Pi1 = mod(Pi1, 289.0);
    vec3 Pf0 = fract(P); // Fractional part for interpolation
    vec3 Pf1 = Pf0 - vec3(1.0); // Fractional part - 1.0
    vec4 ix = vec4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
    vec4 iy = vec4(Pi0.yy, Pi1.yy);
    vec4 iz0 = Pi0.zzzz;
    vec4 iz1 = Pi1.zzzz;

    vec4 ixy = permute(permute(ix) + iy);
    vec4 ixy0 = permute(ixy + iz0);
    vec4 ixy1 = permute(ixy + iz1);

    vec4 gx0 = ixy0 / 7.0;
    vec4 gy0 = fract(floor(gx0) / 7.0) - 0.5;
    gx0 = fract(gx0);
    vec4 gz0 = vec4(0.5) - abs(gx0) - abs(gy0);
    vec4 sz0 = step(gz0, vec4(0.0));
    gx0 -= sz0 * (step(0.0, gx0) - 0.5);
    gy0 -= sz0 * (step(0.0, gy0) - 0.5);

    vec4 gx1 = ixy1 / 7.0;
    vec4 gy1 = fract(floor(gx1) / 7.0) - 0.5;
    gx1 = fract(gx1);
    vec4 gz1 = vec4(0.5) - abs(gx1) - abs(gy1);
    vec4 sz1 = step(gz1, vec4(0.0));
    gx1 -= sz1 * (step(0.0, gx1) - 0.5);
    gy1 -= sz1 * (step(0.0, gy1) - 0.5);

    vec3 g000 = vec3(gx0.x,gy0.x,gz0.x);
    vec3 g100 = vec3(gx0.y,gy0.y,gz0.y);
    vec3 g010 = vec3(gx0.z,gy0.z,gz0.z);
    vec3 g110 = vec3(gx0.w,gy0.w,gz0.w);
    vec3 g001 = vec3(gx1.x,gy1.x,gz1.x);
    vec3 g101 = vec3(gx1.y,gy1.y,gz1.y);
    vec3 g011 = vec3(gx1.z,gy1.z,gz1.z);
    vec3 g111 = vec3(gx1.w,gy1.w,gz1.w);

    vec4 norm0 = taylorInvSqrt(vec4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
    g000 *= norm0.x;
    g010 *= norm0.y;
    g100 *= norm0.z;
    g110 *= norm0.w;
    vec4 norm1 = taylorInvSqrt(vec4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
    g001 *= norm1.x;
    g011 *= norm1.y;
    g101 *= norm1.z;
    g111 *= norm1.w;

    float n000 = dot(g000, Pf0);
    float n100 = dot(g100, vec3(Pf1.x, Pf0.yz));
    float n010 = dot(g010, vec3(Pf0.x, Pf1.y, Pf0.z));
    float n110 = dot(g110, vec3(Pf1.xy, Pf0.z));
    float n001 = dot(g001, vec3(Pf0 

标签: g101cb光电传感器g101p光纤传感器

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台