资讯详情

DBNet实战:详解DBNet训练与测试(pytorch)

论文连接:https://arxiv.org/pdf/1911.08947.pdf

github链接:github.com

网络结构

  • 一是图像输入特征提取主干,提取特征;
  • 其次,在特征金字塔上采样到相同尺寸,并通过特征级联获得特征F;
  • 然后,特征F用于预测概率图(probability map P)和阈值图(threshold map T)
  • 最后,通过P和F计算近似二值图(approximate binary map B)

训练期间是对的P,T,B监督培训,P与B使用相同的监督信号(label)。只需要P或PB你可以得到文本框。

网络输出:

1、probability map, wh1 , 代表像素点是文本的概率

2、threshhold map, wh1, 每个像素点的阈值

3、binary map, wh1, 计算公式为1、2DB公式

如下图:

image-20220401154224255

下载代码

从WenmuZhou/DBNet.pytorch: A pytorch re-implementation of Real-time Scene Text Detection with Differentiable Binarization (github.com)获取代码,然后解压。然后安装缺失的安装包

pip install Polygon3 -i https://pypi.tuna.tsinghua.edu.cn/simple   pip install addict pip install imgaug 

根据自己的环境,环境不同,也不一样。

在pycharm的Terminal下面执行:

python tools/train.py --config_file "config/icdar2015_resnet18_FPN_DBhead_polyLR.yaml" 

如果没有包,就会包错。如果看不到错误,说明是安装的。

数据集

数据集使用icdar网页链接:Downloads - Incidental Scene Text - Robust Reading Competition (uab.es),需要注册。

选择Task4.1:Text Localization

详细介绍数据:Tasks - Incidental Scene Text - Robust Reading Competition (uab.es)

任务 4.1:文本本地化 对于文本本地化任务,我们将为每个图像提供单词边界框。 基本事实作为单独的文本文件(每个图像一个)给出,其中每一行指定一个单词边界框的坐标及其以逗号分隔格式的转录(参见图 1)。

以单词边界框的形式提供文本本地化任务。 与挑战 1 和 2 不同的是,边界在挑战 4 它们由四个角的坐标顺时针指定,而不是轴定向。 对于训练集中的每个图像,将根据命名协议单独提供 UTF-8 文本文件:

gt_[image name].txt

文本文件是一个逗号分隔文件,每行将对应图像中的一个单词,并给出边界坐标(四个角,顺时针)及其格式:

x1, y1, x2, y2, x3, y3, x4, y4, transcription

请注意,第八个逗号后面的任何内容都是转录的一部分,不使用转义字符。 在基本事实中,不关心区域以###的转录表示。 要求作者自动定位图像中的文本并返回边界框。 结果必须在每个图像的单独文本文件中提交,每行对应于上述格式的边界框(逗号分隔值)。 包含所有结果文件的单个压缩应提交(zip 或 rar)文件。 如果您的方法不能为图像生成任何结果,您可以包含空的结果文件或根本不包含任何文件。 与挑战 1 和 2 不同的结果将基于单一的评估 Intersection-over-Union 标准,阈值为 50%类似于对象识别和 Pascal VOC 挑战 [1] 标准实践。

下载数据集后可获得四份文件,如下图所示:

将ch4_training_images.zip解压到./datasets\train\img下面。

将ch4_training_localization_transcription_gt.zip解压到./datasets\train\gt下面。

将ch4_test_images.zip解压到./datasets\test\img下面。

将Challenge4_Test_Task1_GT.zip解压到./datasets\test\gt下面。

接下来,作者将对数据集进行预处理Ubuntu处理脚本在系统下generate_lists.sh,所以如果使用的系统是UBuntu,然后执行脚本

bash generate_lists.sh 

如果是Win需要写10个平台python脚本。新建getdata.py,插入代码:

import os def get_images(img_path):     ''' find image files in data path :return: list of files found '''     files = []     exts = ['jpg', 'png', 'jpeg', 'JPG', 'PNG']     for parent, dirnames, filenames in os.walk(img_path):         for filename in filenames:             for ext in exts:                 if filename.enswith(ext):
                    files.append(os.path.join(parent, filename))
                    break
    print('Find {} images'.format(len(files)))
    return sorted(files)

def get_txts(txt_path):
    ''' find gt files in data path :return: list of files found '''
    files = []
    exts = ['txt']
    for parent, dirnames, filenames in os.walk(txt_path):
        for filename in filenames:
            for ext in exts:
                if filename.endswith(ext):
                    files.append(os.path.join(parent, filename))
                    break
    print('Find {} txts'.format(len(files)))
    return sorted(files)

if __name__ == '__main__':
    import json

    img_train_path = './datasets/train/img'
    img_test_path = './datasets/test/img'
    train_files = get_images(img_train_path)
    test_files = get_images(img_test_path)

    txt_train_path = './datasets/train/gt'
    txt_test_path = './datasets/test/gt'
    train_txts = get_txts(txt_train_path)
    test_txts = get_txts(txt_test_path)
    n_train = len(train_files)
    n_test = len(test_files)
    assert len(train_files) == len(train_txts) and len(test_files) == len(test_txts)
    # with open('train.txt', 'w') as f:
    with open('./datasets/train.txt', 'w') as f:
        for i in range(n_train):
            line = train_files[i] + '\t' + train_txts[i] + '\n'
            f.write(line)
    with open('./datasets/test.txt', 'w') as f:
        for i in range(n_test):
            line = test_files[i] + '\t' + test_txts[i] + '\n'
            f.write(line)

逻辑不复杂,分别将train和test的img文件列表和gt文件列表对应起来保存到train.txt和test.txt中。

完成上面数据的处理就可以开始训练了

训练

到这里已经完成大部分的工作了,只需要对config文件参数做适当的修改就可以开始训练了。

本次训练使用的config文件是./config/icdar2015_resnet18_FPN_DBhead_polyLR.yaml,修改学习率、优化器、BatchSize等参数,如下图:

上面用红框标注的参数,大家根据实际的情况做修改,我的卡是3090,BatchSize设置32.

参数设置完成后,就开启训练,在pycharm的Terminal下面执行:

CUDA_VISIBLE_DEVICES=0 python tools/train.py --config_file "config/icdar2015_resnet18_FPN_DBhead_polyLR.yaml"

测试

打开./tools/predict.py,查看参数:

def init_args():
    import argparse
    parser = argparse.ArgumentParser(description='DBNet.pytorch')
    parser.add_argument('--model_path', default=r'model_best.pth', type=str)
    parser.add_argument('--input_folder', default='./test/input', type=str, help='img path for predict')
    parser.add_argument('--output_folder', default='./test/output', type=str, help='img path for output')
    parser.add_argument('--thre', default=0.3,type=float, help='the thresh of post_processing')
    parser.add_argument('--polygon', action='store_true', help='output polygon or box')
    parser.add_argument('--show', default=True,action='store_true', help='show result')
    parser.add_argument('--save_resut', default=True, action='store_true', help='save box and score to txt file')
    args = parser.parse_args()
    return args

model_path:模型的路径。

input_folder:待测试图片的路径。

output_folder:输出结果的路径。

thre:最低置信度。

polygon:多边形还是框,True为多边形,False为box。建议设置为False。

show:是否展示。

save_resut:是否保存结果。

新建input文件夹,放入测试图片,在pycharm的Terminal执行如下命令:

python tools/predict.py --model_path output/DBNet_resnet18_FPN_DBHead/checkpoint/model_best.pth --input_folder ./input --output_folder ./output --thre 0.7

执行完成后就可以在output文件夹中查看结果了:

总结

今天,我们演示了如果使用DBNet训练和测试。总体看起来不是很难。欢迎大家试用。 完整的代码:https://download.csdn.net/download/hhhhhhhhhhwwwwwwwwww/85065029

标签: y2p连接器

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台