NeurIPS2019
NeurIPS 2019的论文结果已经出炉, 包括了36篇oral和164篇spotlights共1428篇论文。可以看出,论文的主题主要是深度学习、神经网络、图片、优化、通用性、鲁棒性和效率。详细列表见下文。官方发布论文链接后,将及时同步。如果你想及时学习文章,你可以在主流搜索引擎中搜索论文标题,解释和查找预印论文。作者和实验室主页也是寻找论文的好地方~~~
Tips:你感兴趣的论文是什么?你可以在留言中与你分享和交流O(∩_∩)O,也可以附上论文链接一起补充列表~~~ 1,2, 3
Multimodal Model-Agnostic Meta-Learning via Task-Aware Modulation Risto Vuorio (University of Michigan) · Shao-Hua Sun (University of Southern California) · Hexiang Hu (University of Southern California) · Joseph Lim (University of Southern California |
ViLBERT: Pretraining Task-Agnostic Visiolinguistic Representations for Vision-and-Language Tasks Jiasen Lu (Georgia Tech) · Dhruv Batra (Georgia Tech / Facebook AI Research (FAIR)) · Devi Parikh (Georgia Tech / Facebook AI Research (FAIR)) · Stefan Lee (Georgia Institute of Technology) |
Stochastic Shared Embeddings: Data-driven Regularization of Embedding Layers Liwei Wu (University of California, Davis) · Shuqing Li (University of California, Davis) · Cho-Jui Hsieh (UCLA) · James Sharpnack (UC Davis) |
Unsupervised Scale-consistent Depth and Ego-motion Learning from Monocular Video Jiawang Bian (The University of Adelaide) · Zhichao Li (Tusimple) · Naiyan Wang (Hong Kong University of Science and Technology) · Huangying Zhan (The University of Adelaide) · Chunhua Shen (University of Adelaide) · Ming-Ming Cheng (Nankai University) · Ian Reid (University of Adelaide) |
Zero-shot Learning via Simultaneous Generating and Learning Hyeonwoo Yu (Seoul National University) · Beomhee Lee (Seoul National University) |
Ask not what AI can do for you, but what AI should do: Towards a framework of task delegability Brian Lubars (University of Colorado Boulder) · Chenhao Tan (University of Colorado Boulder) |
Stand-Alone Self-Attention in Vision Models Niki Parmar (Google) · Prajit Ramachandran (Google Brain) · Ashish Vaswani (Google Brain) · Irwan Bello (Google) · Anselm Levskaya (Google) · Jon Shlens (Google Research) |
High Fidelity Video Prediction with Large Neural Nets Ruben Villegas (Adobe Research / U. Michigan) · Arkanath Pathak (Google) · Harini Kannan (Google Brain) · Honglak Lee (Google / U. Michigan) · Dumitru Erhan (Google Brain) · Quoc V Le (Google) |
Unsupervised learning of object structure and dynamics from videos Matthias Minderer (Google Research) · Chen Sun (Google Research) · Ruben Villegas (Adobe Research / U. Michigan) · Forrester Cole (Google Research) · Kevin Murphy (Google) · Honglak Lee (Google Brain) |
TensorPipe: Easy Scaling with Micro-Batch Pipeline Parallelism Yanping Huang (Google Brain) · Youlong Cheng (Google) · Ankur Bapna (Google) · Orhan Firat (Google) · Dehao Chen (Google) · Mia Chen (Google Brain) · HyoukJoong Lee (Google) · Jiquan Ngiam (Google Brain) · Quoc V Le (Google) · Yonghui Wu (Google) · zhifeng Chen (Google Brain) |
Mta-Learning with Implicit Gradients Aravind Rajeswaran (University of Washington) · Chelsea Finn (Stanford University) · Sham Kakade (University of Washington) · Sergey Levine (UC Berkeley) |
Adversarial Examples Are Not Bugs, They Are Features Andrew Ilyas (MIT) · Shibani Santurkar (MIT) · Dimitris Tsipras (MIT) · Logan Engstrom (MIT) · Brandon Tran (Massachusetts Institute of Technology) · Aleksander Madry (MIT) |
Social-BiGAT: Multimodal Trajectory Forecasting using Bicycle-GAN and Graph Attention Networks Vineet Kosaraju (Stanford University) · Amir Sadeghian (Stanford University) · Roberto Martín-Martín (Stanford University) · Ian Reid (University of Adelaide) · Hamid Rezatofighi (Stanford University // University of Adelaide) · Silvio Savarese (Stanford University) |
FreeAnchor: Learning to Match Anchors for Visual Object Detection Xiaosong Zhang (University of Chinese Academy of Sciences) · Fang Wan (University of Chinese Academy of Sciences) · Chang Liu (University of Chinese Academy of Sciences) · Rongrong Ji (Xiamen University, China) · Qixiang Ye (University of Chinese Academy of Sciences, China) |
Differentially Private Hypothesis Selection Mark Bun (Boston University) · Gautam Kamath (University of Waterloo) · Thomas Steinke (IBM, Almaden) · Steven Wu (University of Minnesota) |
New Differentially Private Algorithms for Learning Mixtures of Well-Separated Gaussians Gautam Kamath (University of Waterloo) · Or Sheffet (University of Alberta) · Vikrant Singhal (Northeastern University) · Jonathan Ullman (Northeastern University) |
Average-Case Averages: Private Algorithms for Smooth Sensitivity and Mean Estimation Mark Bun (Boston University) · Thomas Steinke (IBM, Almaden) |
Multi-Resolution Weak Supervision for Sequential Data Paroma Varma (Stanford University) · Frederic Sala (Stanford) · Shiori Sagawa (Stanford University) · Jason Fries (Stanford University) · Daniel Fu (Stanford University) · Saelig Khattar (Stanford University) · Ashwini Ramamoorthy (Stanford University) · Ke Xiao (Stanford University) · Kayvon Fatahalian (Stanford) · James Priest (Stanford University) · Christopher Ré (Stanford) |
DeepUSPS: Deep Robust Unsupervised Saliency Prediction via Self-supervision Tam Nguyen (Freiburg Computer Vision Lab) · Maximilian Dax (Bosch GmbH) · Chaithanya Kumar Mummadi (Robert Bosch GmbH) · Nhung Ngo (Bosch Center for Artificial Intelligence) · Thi Hoai Phuong Nguyen (Karlsruhe Institute of Technology (KIT), Germany) · Zhongyu Lou (Robert Bosch Gmbh) · Thomas Brox (University of Freiburg) |
The Point Where Reality Meets Fantasy: Mixed Adversarial Generators for Image Splice Detection Vladimir V. Kniaz (IEEE) · Vladimir Knyaz (State Research Institute of Aviation Systems) · Fabio Remondino ("Fondazione Bruno Kessler, Italy") |
You Only Propagate Once: Accelerating Adversarial Training via Maximal Principle Dinghuai Zhang (Peking University) · Tianyuan Zhang (Peking University) · Yiping Lu (Peking University) · Zhanxing Zhu (Peking University) · Bin Dong (Peking University) |
Imitation Learning from Observations by Minimizing Inverse Dynamics Disagreement Chao Yang (Tsinghua University) · Xiaojian Ma (University of California, Los Angeles) · Wenbing Huang (Tsinghua University) · Fuchun Sun (Tsinghua) · Huaping Liu (Tsinghua University) · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab) · Chuang Gan (MIT-IBM Watson AI Lab) |
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein Distance Kimia Nadjahi (Télécom ParisTech) · Alain Durmus (ENS Paris Saclay) · Umut Simsekli (Institut Polytechnique de Paris/ University of Oxford) · Roland Badeau (Télécom ParisTech) |
Generalized Sliced Wasserstein Distances Soheil Kolouri (HRL Laboratories LLC) · Kimia Nadjahi (Télécom ParisTech) · Umut Simsekli (Institut Polytechnique de Paris/ University of Oxford) · Roland Badeau (Télécom ParisTech) · Gustavo Rohde (University of Virginia) |
First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise Thanh Huy Nguyen (Telecom ParisTech) · Umut Simsekli (Institut Polytechnique de Paris/ University of Oxford) · Mert Gurbuzbalaban (Rutgers) · Gaël RICHARD (Télécom ParisTech) |
Blind Super-Resolution Kernel Estimation using an Internal-GAN Sefi Bell-Kligler (Weizmann Istitute of Science) · Assaf Shocher (Weizmann Institute of Science) · Michal Irani (Weizmann Institute of Science) |
Noise-tolerant fair classification Alex Lamy (Columbia University) · Ziyuan Zhong (Columbia University) · Aditya Menon (Google) · Nakul Verma (Columbia University) |
Generalization in Generative Adversarial Networks: A Novel Perspective from Privacy Protection Bingzhe Wu (Peeking University) · Shiwan Zhao (IBM Research - China) · Haoyang Xu (Peking University) · Chaochao Chen (Ant Financial) · Li Wang (Ant Financial) · Xiaolu Zhang (Ant Financial Services Group) · Guangyu Sun (Peking University) · Jun Zhou (Ant Financial) |
Joint-task Self-supervised Learning for Temporal Correspondence Xueting Li (University of California, Merced) · Sifei Liu (NVIDIA) · Shalini De Mello (NVIDIA) · Xiaolong Wang (CMU) · Jan Kautz (NVIDIA) · Ming-Hsuan Yang (Google / UC Merced) |
Provable Gradient Variance Guarantees for Black-Box Variational Inference Justin Domke (University of Massachusetts, Amherst) |
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation Justin Domke (University of Massachusetts, Amherst) · Daniel Sheldon (University of Massachusetts Amherst) |
Experience Replay for Continual Learning David Rolnick (UPenn) · Arun Ahuja (DeepMind) · Jonathan Schwarz (DeepMind) · Timothy Lillicrap (DeepMind & UCL) · Gregory Wayne (Google DeepMind) |
Deep ReLU Networks Have Surprisingly Few Activation Patterns Boris Hanin (Texas A&M) · David Rolnick (UPenn) |
Chasing Ghosts: Instruction Following as Bayesian State Tracking Peter Anderson (Georgia Tech) · Ayush Shrivastava (Georgia Institute of Technology) · Devi Parikh (Georgia Tech / Facebook AI Research (FAIR)) · Dhruv Batra (Georgia Tech / Facebook AI Research (FAIR)) · Stefan Lee (Georgia Institute of Technology) |
Block Coordinate Regularization by Denoising Yu Sun (Washington University in St. Louis) · Jiaming Liu (Washington University in St. Louis) · Ulugbek Kamilov (Washington University in St. Louis) |
Reducing Noise in GAN Training with Variance Reduced Extragradient Tatjana Chavdarova (Mila & Idiap & EPFL) · Gauthier Gidel (Mila) · François Fleuret (Idiap Research Institute) · Simon Lacoste-Julien (Mila, Université de Montréal) |
Learning Erdos-Renyi Random Graphs via Edge Detecting Queries Zihan Li (National University of Singapore) · Matthias Fresacher (University of Adelaide) · Jonathan Scarlett (National University of Singapore) |
A Primal-Dual link between GANs and Autoencoders Hisham Husain (The Australian National University) · Richard Nock (Data61, the Australian National University and the University of Sydney) · Robert Williamson (Australian National University & Data61) |
muSSP: Efficient Min-cost Flow Algorithm for Multi-object Tracking Congchao Wang (Virginia Tech) · Yizhi Wang (Virginia Tech) · Yinxue Wang (Virginia Tech) · Chiung-Ting Wu (Virginia Tech) · Guoqiang Yu (Virginia Tech) |
Category Anchor-Guided Unsupervised Domain Adaptation for Semantic Segmentation Qiming ZHANG (University of Sydney) · Jing Zhang (The University of Sydney) · Wei Liu (Tencent AI Lab) · Dacheng Tao (University of Sydney) |
Invert to Learn to Invert Patrick Putzky (University of Amsterdam) · Max Welling (University of Amsterdam / Qualcomm AI Research) |
Equitable Stable Matchings in Quadratic Time Nikolaos Tziavelis (Northeastern University) · Ioannis Giannakopoulos (National Technical University of Athens) · Katerina Doka (NTUA) · Nectarios Koziris (NTUA) · Panagiotis Karras (Aarhus University) |
Zero-Shot Semantic Segmentation Maxime Bucher (Valeo.ai) · Tuan-Hung VU (Valeo.ai) · Matthieu Cord (Sorbonne University) · Patrick Pérez (Valeo.ai) |
Metric Learning for Adversarial Robustness Chengzhi Mao (Columbia University) · Ziyuan Zhong (Columbia University) · Junfeng Yang (Columbia University) · Carl Vondrick (Columbia University) · Baishakhi Ray (Columbia University) |
DISN: Deep Implicit Surface Network for High-quality Single-view 3D Reconstruction Qiangeng Xu (USC) · Weiyue Wang (USC) · Duygu Ceylan (Adobe Research) · Radomir Mech (Adobe Systems Incorporated) · Ulrich Neumann (USC) |
Batched Multi-armed Bandits Problem Zijun Gao (Stanford University) · Yanjun Han (Stanford University) · Zhimei Ren (Stanford University) · Zhengqing Zhou (Stanford University) |
vGraph: A Generative Model for Joint Community Detection and Node Representation Learning Fan-Yun Sun (National Taiwan University) · Meng Qu (Mila) · Jordan Hoffmann (Harvard University/Mila) · Chin-Wei Huang (MILA) · Jian Tang (HEC Montreal & MILA) |
Differentially Private Bayesian Linear Regression Garrett Bernstein (University of Massachusetts Amherst) · Daniel Sheldon (University of Massachusetts Amherst) |
Semantic Conditioned Dynamic Modulation for Temporal Sentence Grounding in Videos Yitian Yuan (Tsinghua University) · Lin Ma (Tencent AI Lab) · Jingwen Wang (Tencent AI Lab) · Wei Liu (Tencent AI Lab) · Wenwu Zhu (Tsinghua University) |
AGEM: Solving Linear Inverse Problems via Deep Priors and Sampling Bichuan Guo (Tsinghua University) · Yuxing Han (South China Agriculture University) · Jiangtao Wen (Tsinghua University) |
CPM-Nets: Cross Partial Multi-View Networks Changqing Zhang (Tianjin University) · Zongbo Han (Tianjin University) · yajie cui (tianjin university) · Huazhu Fu (Inception Institute of Artificial Intelligence) · Joey Tianyi Zhou (IHPC, A*STAR) · Qinghua Hu (Tianjin University) |
Learning to Predict Layout-to-image Conditional Convolutions for Semantic Image Synthesis Xihui Liu (The Chinese University of Hong Kong) · Guojun Yin (University of Science and Technology of China) · Jing Shao (Sensetime) · Xiaogang Wang (The Chinese University of Hong Kong) · hongsheng Li (cuhk) |
Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling Andrey Kolobov (Microsoft Research) · Yuval Peres (N/A) · Cheng Lu (Microsoft) · Eric J Horvitz (Microsoft Research) |
SySCD: A System-Aware Parallel Coordinate Descent Algorithm Celestine Mendler-Dünner (UC Berkeley) · Nikolas Ioannou (IBM Research) · Thomas Parnell (IBM Research) |
Importance Weighted Hierarchical Variational Inference Artem Sobolev (Samsung) · Dmitry Vetrov (Higher School of Economics, Samsung AI Center, Moscow) |
RSN: Randomized Subspace Newton Robert Gower (Institut Polytechnique de Paris, Telecom Paris) · Dmitry Koralev (KAUST) · Felix Lieder (Heinrich-Heine-Universität Düsseldorf) · Peter Richtarik (KAUST) |
Trust Region-Guided Proximal Policy Optimization Yuhui Wang (Nanjing University of Aeronautics and Astronautics) · Hao He (Nanjing University of Aeronautics and Astronautics) · Xiaoyang Tan (Nanjing University of Aeronautics and Astronautics, China) · Yaozhong Gan (Nanjing University of Aeronautics and Astronautics, China) |
Adversarial Self-Defense for Cycle-Consistent GANs Dina Bashkirova (Boston University) · Ben Usman (Boston University) · Kate Saenko (Boston University) |
Towards closing the gap between the theory and practice of SVRG Othmane Sebbouh (Télécom ParisTech) · Nidham Gazagnadou (Télécom Paris) · Samy Jelassi (Princeton University) · Francis Bach (INRIA - Ecole Normale Superieure) · Robert Gower (Institut Polytechnique de Paris, Telecom Paris) |
Uniform Error Bounds for Gaussian Process Regression with Application to Safe Control Armin Lederer (Technical University of Munich) · Jonas Umlauft (Technical University of Munich) · Sandra Hirche (Technische Universitaet Muenchen) |
ETNet: Error Transition Network for Arbitrary Style Transfer Chunjin Song (Shenzhen University) · Zhijie Wu (Shenzhen University) · Yang Zhou (Shenzhen University) · Minglun Gong (Memorial Univ) · Hui Huang (Shenzhen University) |
No Pressure! Addressing the Problem of Local Minima in Manifold Learning Algorithms Max Vladymyrov (Google Research) |
Deep Equilibrium Models Shaojie Bai (Carnegie Mellon University) · J. Zico Kolter (Carnegie Mellon University / Bosch Center for AI) · Vladlen Koltun (Intel Labs) |
Saccader: Accurate, Interpretable Image Classification with Hard Attention Gamaleldin Elsayed (Google Research, Brain Team) · Simon Kornblith (Google Brain) · Quoc V Le (Google) |
Multiway clustering via tensor block models Miaoyan Wang (University of Wisconsin - Madison) · Yuchen Zeng (University of Wisconsin - Madison) |
Regret Minimization for Reinforcement Learning on Multi-Objective Online Markov Decision Processes Wang Chi Cheung (Department of Industrial Systems Engineering and Management, National University of Singapore) |
NAT: Neural Architecture Transformer for Accurate and Compact Architectures Yong Guo (South China University of Technology) · Yin Zheng (Tencent AI Lab) · Mingkui Tan (South China University of Technology) · Qi Chen (South China University of Technology) · Jian Chen ("South China University of Technology, China") · Peilin Zhao (Tencent AI Lab) · Junzhou Huang (University of Texas at Arlington / Tencent AI Lab) |
Selecting Optimal Decisions via Distributionally Robust Nearest-Neighbor Regression Ruidi Chen (Boston University) · Ioannis Paschalidis (Boston University) |
Network Pruning via Transformable Architecture Search Xuanyi Dong (University of Technology Sydney) · Yi Yang (UTS) |
Differentiable Cloth Simulation for Inverse Problems Junbang Liang (University of Maryland, College Park) · Ming C Lin (UMD-CP & UNC-CH) · Vladlen Koltun (Intel Labs) |
Poisson-randomized Gamma Dynamical Systems Aaron Schein (UMass Amherst) · Scott Linderman (Columbia University) · Mingyuan Zhou (University of Texas at Austin) · David Blei (Columbia University) · Hanna Wallach (MSR NYC) |
Volumetric Correspondence Networks for Optical Flow Gengshan Yang (Carnegie Mellon University) · Deva Ramanan (Carnegie Mellon University) |
Learning Conditional Deformable Templates with Convolutional Networks Adrian Dalca (MIT, HMS) · Marianne Rakic (MIT/ETH Zürich) · John Guttag (Massachusetts Institute of Technology) · Mert Sabuncu (Cornell) |
Fast Low-rank Metric Learning for Large-scale and High-dimensional Data Han Liu (Tsinghua University) · Zhizhong Han (University of Maryland, College Park) · Yu-Shen Liu (Tsinghua University) · Ming Gu (Tsinghua University) |
Efficient Symmetric Norm Regression via Linear Sketching Zhao Song (University of Washington) · Ruosong Wang (Carnegie Mellon University) · Lin Yang (Johns Hopkins University) · Hongyang Zhang (Carnegie Mellon University) · Peilin Zhong (Columbia University) |
RUBi: Reducing Unimodal Biases in Visual Question Answering Remi Cadene (Sorbonne University - LIP6) · Corentin Dancette (Sorbonne Université) · Hedi Ben younes (Université Pierre & Marie Curie / Heuritech) · Matthieu Cord (Sorbonne University) · Devi Parikh (Georgia Tech / Facebook AI Research (FAIR)) |
Reducing Scene Bias of Convolutional Neural Networks for Human Action Understanding Jinwoo Choi (Virginia Tech) · Chen Gao (Virginia Tech) · Joseph C. E. Messou (Virginia Tech) · Jia-Bin Huang (Virginia Tech) |
NeurVPS: Neural Vanishing Point Scanning via Conic Convolution Yichao Zhou (UC Berkeley) · Haozhi Qi (UC Berkeley) · Jingwei Huang (Stanford University) · Yi Ma (UC Berkeley) |
DATA: Differentiable ArchiTecture Approximation Jianlong Chang (National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences) · xinbang zhang (Institute of Automation,Chinese Academy of Science) · Yiwen Guo (Intel Labs China) · GAOFENG MENG (Institute of Automation, Chinese Academy of Sciences) · SHIMING XIANG (Chinese Academy of Sciences, China) · Chunhong Pan (Institute of Automation, Chinese Academy of Sciences) |
Learn, Imagine and Create: Text-to-Image Generation from Prior Knowledge Tingting Qiao (Zhejiang University) · Jing Zhang (The University of Sydney) · Duanqing Xu (Zhejiang University) · Dacheng Tao (University of Sydney) |
Memory-oriented Decoder for Light Field Salient Object Detection Miao Zhang (Dalian University of Technology) · Jingjing Li (Dalian University of Technology) · Wei Ji (Dalian University of Technology) · Yongri Piao (Dalian University of Technology) · Huchuan Lu (Dalian University of Technology) |
Multi-label Co-regularization for Semi-supervised Facial Action Unit Recognition Xuesong Niu (Institute of Computing Technology, CAS) · Hu Han (ICT, CAS) · Shiguang Shan (Chinese Academy of Sciences) · Xilin Chen (Institute of Computing Technology, Chinese Academy of Sciences) |
Correlated Uncertainty for Learning Dense Correspondences from Noisy Labels Natalia Neverova (Facebook AI Research) · David Novotny (Facebook AI Research) · Andrea Vedaldi (University of Oxford / Facebook AI Research) |
Powerset Convolutional Neural Networks Chris Wendler (ETH Zurich) · Markus Püschel (ETH Zurich) · Dan Alistarh (IST Austria) |
Optimal Pricing in Repeated Posted-Price Auctions with Different Patience of the Seller and the Buyer Arsenii Vanunts (Yandex) · Alexey Drutsa (Yandex) |
An Accelerated Decentralized Stochastic Proximal Algorithm for Finite Sums Hadrien Hendrikx (INRIA) · Francis Bach (INRIA - Ecole Normale Superieure) · Laurent Massoulié (Inria) |
Efficient 3D Deep Learning via Point-Based Representation and Voxel-Based Convolution Zhijian Liu (MIT) · Haotian Tang (Shanghai Jiao Tong University) · Yujun Lin (MIT) · Song Han (MIT) |
Deep Learning without Weight Transport Mohamed Akrout (University of Toronto) · Collin Wilson (University of Toronto) · Peter Humphreys (Deepmind) · Timothy Lillicrap (DeepMind & UCL) · Douglas Tweed (University of Toronto) |
Combinatorial Bandits with Relative Feedback Aadirupa Saha (Indian Institute of Science) · Aditya Gopalan (Indian Institute of Science) |
General Proximal Incremental Aggregated Gradient Algorithms: Better and Novel Results under General Scheme Tao Sun (National university of defense technology) · Yuejiao Sun (University of California, Los Angeles) · Dongsheng Li (School of Computer Science, National University of Defense Technology) · Qing Liao (Harbin Institute of Technology (Shenzhen)) |
Joint Optimizing of Cycle-Consistent Networks Leonidas J Guibas (stanford.edu) · Qixing Huang (The University of Texas at Austin) · Zhenxiao Liang (The University of Texas at Austin) |
Explicit Disentanglement of Appearance and Perspective in Generative Models Nicki Skafte Detlefsen (Technical University of Denmark) · Søren Hauberg (Technical University of Denmark) |
Polynomial Cost of Adaptation for X-Armed Bandits Hedi Hadiji (Laboratoire de Mathematiques d’Orsay, Univ. Paris-Sud,) |
Learning to Propagate for Graph Meta-Learning LU LIU (University of Technology Sydney) · Tianyi Zhou (University of Washington, Seattle) · Guodong Long (University of Technology Sydney) · Jing Jiang (University of Technology Sydney) · Chengqi Zhang (University of Technology Sydney) |
Secretary Ranking with Minimal Inversions Sepehr Assadi (Princeton University) · Eric Balkanski (Harvard University) · Renato Leme (Google Research) |
Nonparametric Regressive Point Processes Based on Conditional Gaussian Processes Siqi Liu (University of Pittsburgh) · Milos Hauskrecht (University of Pittsburgh) |
Learning Perceptual Inference by Contrasting Chi Zhang (University of California, Los Angeles) · Baoxiong Jia (UCLA) · Feng Gao (UCLA) · Yixin Zhu (University of California, Los Angeles) · HongJing Lu (UCLA) · Song-Chun Zhu (UCLA) |
Selecting the independent coordinates of manifolds with large aspect ratios Yu-Chia Chen (University of Washington) · Marina Meila (University of Washington) |
Region-specific Diffeomorphic Metric Mapping Zhengyang Shen (University of North Carolina at Chapel Hill) · Francois-Xavier Vialard (University Paris-Est) · Marc Niethammer (UNC Chapel Hill) |
Subset Selection via Supervised Facility Location Chengguang Xu (Northeastern University) · Ehsan Elhamifar (Northeastern University) |
Scene Representation Networks: Continuous 3D-Structure-Aware Neural Scene Representations Vincent Sitzmann (Stanford University) · Michael Zollhoefer (Facebook Reality Labs) · Gordon Wetzstein (Stanford University) |
Reconciling λ-Returns with Experience Replay Brett Daley (Northeastern University) · Christopher Amato (Northeastern University) |
Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence Fengxiang He (The University of Sydney) · Tongliang Liu (The University of Sydney) · Dacheng Tao (University of Sydney) |
Non-Asymptotic Gap-Dependent Regret Bounds for Tabular MDPs Max Simchowitz (Berkeley) · Kevin Jamieson (U Washington) |
A Graph Theoretic Framework of Recomputation Algorithms for Memory-Efficient Backpropagation Mitsuru Kusumoto (Preferred Networks, Inc.) · Takuya Inoue (University of Tokyo) · Gentaro Watanabe (Preferred Networks, Inc.) · Takuya Akiba (Preferred Networks, Inc.) · Masanori Koyama (Preferred Networks Inc. ) |
Combinatorial Inference against Label Noise Paul Hongsuck Seo (POSTECH) · Geeho Kim (Seoul National University) · Bohyung Han (Seoul National University) |
Value Propagation for Decentralized Networked Deep Multi-agent Reinforcement Learning Chao Qu (Ant Financial Services Group) · Shie Mannor (Technion) · Huan Xu (Georgia Inst. of Technology) · Yuan Qi (Ant Financial Services Group) · Le Song (Ant Financial Services Group) · Junwu Xiong (Ant Financial Services Group) |
Convolution with even-sized kernels and symmetric padding Shuang Wu (Tsinghua University) · Guanrui Wang (Tsinghua University) · Pei Tang (Tsinghua University) · Feng Chen (Tsinghua University) · Luping Shi (tsinghua university) |
On The Classification-Distortion-Perception Tradeoff Dong Liu (University of Science and Technology of China) · Haochen Zhang (University of Science and Technology of China) · Zhiwei Xiong (University of Science and Technology of China) |
Optimal Statistical Rates for Decentralised Non-Parametric Regression with Linear Speed-Up Dominic Richards (University of Oxford) · Patrick Rebeschini (University of Oxford) |
Online sampling from log-concave distributions Holden Lee (Princeton University) · Oren Mangoubi (Worcester Polytechnic Institute) · Nisheeth Vishnoi (Yale University) |
Envy-Free Classification Maria-Florina Balcan (Carnegie Mellon University) · Travis Dick (Carnegie Mellon University) · Ritesh Noothigattu (Carnegie Mellon University) · Ariel Procaccia (Carnegie Mellon University) |
Finding Friend and Foe in Multi-Agent Games Jack S Serrino (MIT) · Max Kleiman-Weiner (Harvard/MIT) · David Parkes (Harvard University) · Josh Tenenbaum (MIT) |
Computer Vision with a Single (Robust) Classifier Shibani Santurkar (MIT) · Andrew Ilyas (MIT) · Dimitris Tsipras (MIT) · Logan Engstrom (MIT) · Brandon Tran (Massachusetts Institute of Technology) · Aleksander Madry (MIT) |
Gated CRF Loss for Weakly Supervised Semantic Image Segmentation Anton Obukhov (ETH Zurich) · Stamatios Georgoulis (ETH Zurich) · Dengxin Dai (ETH Zurich) · Luc V Gool (Computer Vision Lab, ETH Zurich) |
Model Compression with Adversarial Robustness: A Unified Optimization Framework Shupeng Gui (University of Rochester) · Haotao N Wang (Texas A&M University) · Haichuan Yang (University of Rochester) · Chen Yu (University of Rochester) · Zhangyang Wang (TAMU) · Ji Liu (University of Rochester, Tencent AI lab) |
Neuron Communication Networks Jianwei Yang (Georgia Tech) · Zhile Ren (Georgia Tech) · Chuang Gan (MIT-IBM Watson AI Lab) · Hongyuan Zhu (Astar) · Ji Lin (MIT) · Devi Parikh (Georgia Tech / Facebook AI Research (FAIR)) |
CondConv: Conditionally Parameterized Convolutions for Efficient Inference Brandon Yang (Google Brain) · Gabriel Bender (Google Brain) · Quoc V Le (Google) · Jiquan Ngiam (Google Brain) |
Regression Planning Networks Danfei Xu (Stanford University) · Roberto Martín-Martín (Stanford University) · De-An Huang (Stanford University) · Yuke Zhu (Stanford University) · Silvio Savarese (Stanford University) · Li Fei-Fei (Stanford University) |
Twin Auxilary Classifiers GAN Mingming Gong (University of Melbourne) · Yanwu Xu (University of Pittsburgh) · Chunyuan Li (Microsoft Research) · Kun Zhang (CMU) · Kayhan Batmanghelich (University of Pittsburgh) |
Conditional Structure Generation through Graph Variational Generative Adversarial Nets Carl Yang (University of Illinois, Urbana Champaign) · Peiye Zhuang (UIUC) · Wenhan Shi (UIUC) · Alan Luu (UIUC) · Pan Li (Stanford) |
Distributional Policy Optimization: An Alternative Approach for Continuous Control Chen Tessler (Technion) · Guy Tennenholtz (Technion) · Shie Mannor (Technion) |
Sampling Sketches for Concave Sublinear Functions of Frequencies Edith Cohen (Google) · Ofir Geri (Stanford University) |
Deliberative Explanations: visualizing network insecurities Pei Wang (UC San Diego) · Nuno Nvasconcelos (UC San Diego) |
Computing Full Conformal Prediction Set with Approximate Homotopy Eugene Ndiaye (Riken AIP) · Ichiro Takeuchi (Nagoya Institute of Technology) |
Failing Loudly: An Empirical Study of Methods for Detecting Dataset Shift Stephan Rabanser (Amazon / TU Munich) · Stephan Günnemann (Technical University of Munich) · Zachary Lipton (Carnegie Mellon University) |
Hierarchical Reinforcement Learning with Advantage-Based Auxiliary Rewards Siyuan Li (Tsinghua University) · Rui Wang (Stanford University) · Minxue Tang (Tsinghua University) · Chongjie Zhang (Tsinghua University) |
Multi-View Reinforcement Learning Minne Li (University College London) · Lisheng Wu (UCL) · Jun WANG (UCL) |
Cascade RPN: Delving into High-Quality Region Proposal Network with Adaptive Convolution Thang Vu (KAIST) · Hyunjun Jang (KAIST) · Trung X Pham (KAIST) · Chang Yoo (KAIST) |
Neural Diffusion Distance for Image Segmentation Jian Sun (Xi'an Jiaotong University) · Zongben Xu (XJTU) |
Fine-grained Optimization of Deep Neural Networks Mete Ozay (Independent Researcher (N/A)) |
Extending Stein’s Unbiased Risk Estimator To Train Deep Denoisers with Correlated Pairs of Noisy Images Magauiya Zhussip (UNIST) · Shakarim Soltanayev (Ulsan National Institute of Science and Technology) · Se Young Chun (UNIST) |
Wibergian Learning of Continuous Energy Functions Chris Russell (The Alan Turing Institute/ The University of Surrey) · Matteo Toso (University of Surrey) · Neill Campbell (University of Bath) |
Hyperspherical Prototype Networks Pascal Mettes (University of Amsterdam) · Elise van der Pol (University of Amsterdam) · Cees Snoek (University of Amsterdam) |
Expressive power of tensor-network factorizations for probabilistic modelling Ivan Glasser (Max Planck Institute of Quantum Optics) · Ryan Sweke (Freie Universitaet Berlin) · Nicola Pancotti (Max Planck Institute of Quantum Optics) · Jens Eisert (Freie Universitaet Berlin) · Ignacio Cirac (Max-Planck Institute of Quantum Optics) |
HyperGCN: A New Method For Training Graph Convolutional Networks on Hypergraphs Naganand Yadati (Indian Institute of Science) · Madhav Nimishakavi (Indian Institute of Science) · Prateek Yadav (Indian Institute of Science) · Vikram Nitin (Indian Institute of Science) · Anand Louis (Indian Institute of Science, Bangalore, India) · Partha Talukdar (Indian Institute of Science, Bangalore) |
SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points Zhize Li (Tsinghua University) |
Efficient Meta Learning via Minibatch Proximal Update Pan Zhou (National University of Singapore) · Xiaotong Yuan (Nanjing University of Information Science & Technology) · Huan Xu (Alibaba Group) · Shuicheng Yan (National University of Singapore) · Jiashi Feng (National University of Singapore) |
Unconstrained Monotonic Neural Networks Antoine Wehenkel (ULiège) · Gilles Louppe (University of Liège) |
Guided Similarity Separation for Image Retrieval Chundi Liu (Layer6 AI) · Guangwei Yu (Layer6) · Maksims Volkovs (Layer6 AI) · Cheng Chang (Layer6 AI) · Himanshu Rai (Layer6 AI) · Junwei Ma (Layer6 AI) · Satya Krishna Gorti (Layer6 AI) |
Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao (Stanford University) · Colin Wei (Stanford University) · Adrien Gaidon (Toyota Research Institute) · Nikos Arechiga (Toyota Research Institute) · Tengyu Ma (Stanford) |
Strategizing against No-regret Learners Yuan Deng (Duke University) · Jon Schneider (Google Research) · Balasubramanian Sivan (Google Research) |
D-VAE: A Variational Autoencoder for Directed Acyclic Graphs Muhan Zhang (Washington University; Facebook (now)) · Shali Jiang (Washington University in St. Louis) · Zhicheng Cui (Washington University in St. Louis) · Roman Garnett (Washington University in St. Louis) · Yixin Chen (Washington University in St. Louis) |
Hierarchical Optimal Transport for Document Representation Mikhail Yurochkin (IBM Research, MIT-IBM Watson AI Lab) · Sebastian Claici (MIT) · Edward Chien (Massachusetts Institute of Technology) · Farzaneh Mirzazadeh (MIT-IBM Watson AI Lab, IBM Research) · Justin M Solomon (MIT) |
Multivariate Sparse Coding of Nonstationary Covariances with Gaussian Processes Rui Li (Rochester Institute of Technology) |
Positional Normalization Boyi Li (Cornell University) · Felix Wu (Cornell University) · Kilian Weinberger (Cornell University / ASAPP Research) · Serge Belongie (Cornell University) |
A New Defense Against Adversarial Images: Turning a Weakness into a Strength Shengyuan Hu (Cornell University) · Tao Yu (Cornell University) · Chuan Guo (Cornell University) · Wei-Lun Chao (Cornell University Ohio State University (OSU)) · Kilian Weinberger (Cornell University / ASAPP Research) |
Quadratic Video Interpolation Xiangyu Xu (Carnegie Mellon University) · Li Siyao (SenseTime Research) · Wenxiu Sun (SenseTime Research) · Qian Yin (Beijing Normal University) · Ming-Hsuan Yang (Google / UC Merced) |
ResNets Ensemble via the Feynman-Kac Formalism to Improve Natural and Robust Accuracies Bao Wang (UCLA) · Zuoqiang Shi (zqshi@mail.tsinghua.edu.cn) · Stanley Osher (UCLA) |
Incremental Scene Synthesis Benjamin Planche (Siemens Corporate Technology) · Xuejian Rong (City University of New York) · Ziyan Wu (United Imaging Intelligence) · Srikrishna Karanam (United Imaging Intelligence) · Harald Kosch (PASSAU) · YingLi Tian (City University of New York) · Jan Ernst (Siemens Research) · ANDREAS HUTTER (Siemens Corporate Technology, Germany) |
Self-Supervised Generalisation with Meta Auxiliary Learning Shikun Liu (Imperial College London) · Andrew Davison (Imperial College London) · Edward Johns (Imperial College London) |
Variational Denoising Network: Toward Blind Noise Modeling and Removal Zongsheng Yue (Xi'an Jiaotong University) · Hongwei Yong (The Hong Kong Polytechnic University) · Qian Zhao (Xi'an Jiaotong University) · Deyu Meng (Xi'an Jiaotong University) · Lei Zhang (The Hong Kong Polytechnic Univ) |
Fast Sparse Group Lasso Yasutoshi Ida (NTT) · Yasuhiro Fujiwara (NTT Communication Science Laboratories) · Hisashi Kashima (Kyoto University/RIKEN Center for AIP) |
Learnable Tree Filter for Structure-preserving Feature Transform Lin Song (Xi'an Jiaotong University) · Yanwei Li (Institute of Automation, Chinese Academy of Sciences) · Zeming Li (Megvii(Face++) Inc) · Gang Yu (Megvii Inc) · Hongbin Sun (Xi'an Jiaotong University) · Jian Sun (Megvii, Face++) · Nanning Zheng (Xi'an Jiaotong University) |
Data-Dependence of Plateau Phenomenon in Learning with Neural Network --- Statistical Mechanical Analysis Yuki Yoshida (The University of Tokyo) · Masato Okada (The University of Tokyo) |
Coordinated hippocampal-entorhinal replay as structural inference Talfan Evans (University College London) · Neil Burgess (University College London) |
Cascaded Dilated Dense Network with Two-step Data Consistency for MRI Reconstruction Hao Zheng (East China Normal University) · Faming Fang (East China Normal University) · Guixu Zhang (East China Normal University) |
On the Ineffectiveness of Variance Reduced Optimization for Deep Learning Aaron Defazio (Facebook AI Research) · Leon Bottou (FAIR) |
On the Curved Geometry of Accelerated Optimization Aaron Defazio (Facebook AI Research) |
Multi-marginal Wasserstein GAN Jiezhang Cao (South China University of Technology) · Langyuan Mo (South China University of Technology) · Yifan Zhang (South China University of Technology) · Kui Jia (South China University of Technology) · Chunhua Shen (University of Adelaide) · Mingkui Tan (South China University of Technology) |
Better Exploration with Optimistic Actor Critic Kamil Ciosek (Microsoft) · Quan Vuong (University of California San Diego) · Robert Loftin (Microsoft Research) · Katja Hofmann (Microsoft Research) |
Importance Resampling for Off-policy Prediction Matthew Schlegel (University of Alberta) · Wesley Chung (McGill University) · Daniel Graves (Huawei Technologies Canada) · Jian Qian (University of Alberta) · Martha White (University of Alberta) |
The Label Complexity of Active Learning from Observational Data Songbai Yan (University of California, San Diego) · Kamalika Chaudhuri (UCSD) · Tara Javidi (University of California San Diego) |
Meta-Learning Representations for Continual Learning Khurram Javed (University of Alberta) · Martha White (University of Alberta) |
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial Training Haichao Zhang (Horizon Robotics) · Jianyu Wang (Baidu USA) |
Visualizing the PHATE of Neural Networks Scott Gigante (Yale University) · Adam S Charles (Princeton University) · Smita Krishnaswamy (Yale University) · Gal Mishne (UC San Diego) |
The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers Alex Lu (University of |