资讯详情

服务器硬件基础知识

服务器是一种计算机,是网络中的客户端计算机提供各种服务的

服务器在网络操作系统在控制下,将硬盘、磁带、打印机和昂贵的特殊通信设备提供给网络上的客户网站,也可以为网络用户提供等服务。

服务器的英文名称是Server。

X86架构服务器

RISC架构服务器

EPIC架构服务器(IA-64)(IA:Intel Architecture)

1)X86架构服务器

,x86-64是AMD在其最新的Athlon 64处理器系列中使用的新架构,但该处理器的基础架构仍然是IA-32(因为英特尔x86架构没有申请专利保护,所以绝大多数处理器制造商为了维护和维护Intel主流处理器兼容,必须使用x86架构64位程序的应用,进一步提高处理器的,以支持64位程序的应用,进一步提高处理器的计算性能。

2)RISC架构服务器

RISC英文全称(减少指令集计算),中文为它的指令系统相对简单,它只需要硬件执行大多数复杂的操作都是成熟的。该指令系统目前广泛应用于中高端服务器中CPU,特别是所有高端服务器都使用RISC指令系统的CPU,此类服务器使用UNIX操作系统。 在中高档服务器中使用RISC指令的CPU主要有Compaq公司(康柏,即新惠普)Alpha、HP公司的PA-RISC、IBM公司的Power PC、SGI公司的MIPS和SUN公司的Sparc。

3)IA-64

EPIC(Explicitly Parallel InstructionComputers,精确并行指令计算机)。Intel采用EPIC技术服务器CPU是。在Intel采用了X在86指令集之后,它转而寻求更先进的64-bit微处理器,Intel原因是他们想摆脱巨大的容量x86架构引入精力充沛、功能强大的指令集,因此采用EPIC指令集的IA-64架构诞生了。IA-64在很多方面都比较x86取得了长足的进步。突破传统IA32架构的许多限制在数据处理能力、系统稳定性、安全性、可用性和可观性方面取得了突破。IA-64微处理器最大的缺陷是它们的缺陷x86的兼容。

3.服务器按功能应用分类

域控服务器(Domain Server)

文件服务器(File Server)

打印服务器(Print Server)

数据库服务器(Database Server)

邮件服务器(E-mail Server)

Web服务器(Web Server)

多媒体服务器(MultimediaServer)

通讯服务器(Communication Server)

终端服务器(Terminal Server)

基础设施服务器(Infrastructure Server)

虚拟化服务器(Virtualization Server)

就目前的技术而言,这些功能分为。多个功能可以部署在服务器上。在物理形式上,服务器可以完成多个功能。

4.服务器按外观分类

服务器的1U、2U、4U是指什么?

当服务器或租用机柜时,有时会听到1U、2U、4U或者42U像这样的名词。这些名词是什么意思?

机架式服务器看起来不像电脑,而是像交换机,有1U(1U=1.75英寸,4.445 厘米)、2U、4U等等规格。标准安装机架式服务器里面。这种结构多为功能服务器。

4.1关于“U”的单位

U它是一种表示服务器外部尺寸的单位。规定了服务器的尺寸,可以使服务器以一定的尺寸放置在机架上。机架上有固定服务器的螺孔,使其与服务器的螺孔对齐,然后用螺钉固定,便于安装每个服务器所需的空间。

4.2 1U服务器、2U服务器、4U服务器

服务器规定的尺寸是服务器,4.厚度(高度).445cm基本单位。

在机架式服务器的尺寸中,常见的是1U服务器、2U服务器、4U这些服务器的尺寸是:1U=4.445厘米,2U=4.445*2=8.89厘米,4U=4.445*4=17.78 cm。在实际使用中,1U或者2U最常用的服务器。由于服务提供商根据服务器占用的空间计算费用,因此使用1U服务器最节省空间,价格最低,但1U服务器的扩展性不如2U好的服务器U最多可插4个硬盘数,2个U可插8个,另外PCI插槽数量也不同,1U最多2个,2U可达6个。

U 11U等于4.45厘米 ,那3U就是3x4.5CM了。

U(unit缩略语)是一种表示组合框架外部尺寸的单元,具体尺寸由美国电子工业协会作为行业集团组成(EIA)决定。

,美国电子行业标准制定者之一。EIA(电子工业协会)成立于1924年,当时被称为无线电制造商协会(Radio Manufacturers' Association:RMA),只有17名成员,代表不过200万美元产值的无线电制造业,而今,EIA代表美国2000亿美元产值的电子工业制造商已成为全国纯服务贸易组织,总部设在弗吉尼亚阿灵顿。EIA广泛代表了电子元件、部件、通信系统和设备的设计和生产,在提高美国制造商的竞争力方面发挥了重要作用。

规定的尺寸为宽(48.26cm高(4)=19英寸.445cm的倍数)。

厚度以4.445cm基本单位。

服务器尺寸规格:

1U=4.45cm

2U=4.45cm * 2

3U=4.45cm * 3

4U=4.45cm * 4

U并不是服务器的专利,最早是用于通讯交换的机架结构,后备引用到服务器的机架。目前作为非正式标准用在机架结构上,包括规定的螺丝大小,孔距,划轨,等等。

1U和2U,是服务器的厚度,1U大概相当于机柜的两个小格子,2U是四个格子。1U是4.445厘米。以下这个是图片:

4.3 19英寸

19英寸标准机柜,19表示的是宽度,就是可以放置下19英寸的机架式服务器的机柜。

19英寸是指服务器的宽度,那么具体指的是那个尺寸呢?19英寸=48.26cm,是指机架式设备两个挂耳之间的距离。

这是目前大部分机架式设备的结构标准。

标准机柜的结构比较简单,主要包括基本框架、内部支撑系统、布线系统、通风系统。19寸标准机柜外型有宽度、高度、深度三个常规指标。虽然对于19寸面板设备安装宽度为465.1mm,但机柜的物理宽度常见的产品为600mm和800mm两种。高度一般从0.7M-2.4M,常见的成品19寸机柜高度为1.6M和2M。机柜的深度一般从450mm-1000mm,根据柜内设备的尺寸而定,通常厂商也可以定制特殊深度的产品,常见的成品19寸机柜深度为450mm、600mm、800mm,900mm,1000mm。19寸标准机柜内设备安装所占高度用一个特殊单位"U"表示,1U=44.45mm。使用 19寸标准机柜的设备面板一般都是按nU的规格制造。对于一些非标准设备,大多可以通过附加适配档板装入19寸机箱并固定。很多工程级的设备的面板宽度都采用19寸,所以19寸的机柜是最常见的一种标准机柜。

4.4 

42U机柜一般的分类是:

1)按宽度分:600mm和800mm宽的42U机柜,深度有:600mm,800mm,900mm,960mm,1000mm,1100mm,1200mm等;

2)按实际需求分:除了实际使用尺寸是42U之外,宽度和深度可以按照实际需求定制。

一个机柜所放的服务器是有限的,42U高度的机柜并不代表着实际能够放42个1U服务器。放了服务器之后还要留散热和挪动的空间,一些走线的空间,还有放交换机、防火墙、显示器等其他设备的空间。所以一个42U机柜能放多少服务器,需要根据具体的设备来计算。

塔式服务器是最基本的服务器类型,通常被误认为台式计算机的传统CPU。在外部,塔式服务器的外观和感觉非常类似于传统的塔式PC。这些服务器旨在提供基本的性能水平,因此即使在价格方面也处于较低端。但是,当前有许多塔式服务器,它们成本很高,并且可以处理大量和多项任务。

塔式服务器会占用大量要安装和使用的物理空间。由于它们体积大(大多数情况下),因此对其进行物理管理变得困难。而且,由于尺寸的原因,很难将它们堆叠在一起或将它们从一个地方重新布置到另一个地方。

每个塔式服务器都占用大量办公空间,并且还需要一个单独的开关才能进行管理。否则,您必须拔下电源插头才能控制每个设备。而且,如果您有许多连接到服务器的网络设备或外围设备,那么处理电缆布线就不容易了,尤其是对于塔式服务器而言。

塔式服务器通常不预先安装任何其他功能,例如高级图形卡,用于冷却的专用风扇,专用的更高内存,KVM套件等。但是,对于计划在不久的将来升级其服务器的企业或组织而言,这使其成为理想的选择。话虽如此,升级塔式服务器很容易且具有成本效益。

优点

  • 可伸缩性和升级简便性:塔式服务器可以根据需要进行定制和升级。
  • 经济高效:塔式服务器可能是所有类型服务器中最便宜的,因此非常具有成本效益。
  • 易于冷却:由于塔式服务器的整体组件密度较低,因此很容易冷却。

缺点

  • 占用大量空间:这些服务器占用大量物理空间,并且很难进行物理管理。
  • 提供基本的性能水平: 塔式服务器非常适合客户端数量有限的小型企业。
  • 复杂的电缆管理:设备不容易布线在一起;鼠标,键盘和显示器需要插入每台单独的服务器中,除非您想在每次需要使用其中一台服务器时都换掉它们。

机架服务器比塔式服务器小,安装在机架内部。这些机架与普通机架类似,我们使用它们来堆叠一组文件和文件夹。通过将服务器与其他设备(例如存储单元,冷却系统,SAN设备,网络外围设备和电池)垂直堆叠在一起,可以将机架服务器设计为位于机架中。

用于安装这些机架服务器的机架符合IEEE标准,通常以机架单位或“ U”进行测量。每个U宽约19英寸,高约1.5-1.75英寸。使用这些机架的优点是它允许用户将其他电子设备与服务器一起堆叠。单个机架可以包含多个服务器以及上述其他设备。因此,与塔式服务器相比,这些机架式服务器使用起来非常方便,并且占用的空间更少。

由于机架将所有设备放置在一起,因此电缆管理变得更加简洁,因为由于机架中存在管理工具,电缆管理相对容易组织。但是,您仍然必须处理机架服务器中的大量电缆。

与塔式服务器一样,大多数机架服务器也需要与KVM交换机连接才能运行。机架服务器可在处理器,RAM和存储方面进行扩展。但是,您需要在机架中安排空间以适应升级。

优点

  • 故障抑制:在机架式服务器中,只需花费很少的精力就可以识别,卸下和更换故障服务器。
  • 简化的电缆管理:机架中的管理工具可轻松有效地组织电缆。
  • 经济高效:它们以相对较低的成本提供了大量的计算能力和效率。

缺点

  • 功耗:机架服务器由于总体组件密度高而常常需要具有附加的冷却系统,从而消耗更多的功率。
  • 维护:由于将多个设备一起放置在机架中,因此随着机架数量的增加,维护它们变得非常困难。

刀片服务器是市场上最新,最先进的服务器。它们可以称为,其中服务器被放置在刀片机箱内,形成刀片系统。刀片服务器的最大优势在于,这些服务器是目前可用的最小类型的服务器,非常适合节省空间。

刀片系统也符合机架单位的IEEE标准,每个机架均以“ U”为单位进行测量。这些刀片架还可以容纳其他电子设备,例如机架服务器。刀片机箱采用简化的模块化设计,以减少能源和空间消耗。这些服务器还包括一个热插拔系统,可以轻松地分别识别和处理每台服务器。由于其更高的处理能力和效率,刀片服务器经常用于网格计算中。

大多数最新的刀片服务器都以某种方式设计,使得无需关闭服务器就可以在刀片服务器系统中删除或添加服务器。此外,还可以通过添加新的通信,存储单元和处理器来重新配置或升级现有服务器系统,而不会对正在运行的服务造成任何干扰或干扰很小。

优点

  • 负载平衡和故障转移:由于其基础结构更简单,更苗条,服务器之间的负载平衡和故障转移管理也趋于简单得多。
  • 集中管理:在刀片服务器中,您可以通过一个接口连接所有刀片,从而使维护和监控变得容易。
  • 布线:刀片服务器不涉及设置布线的繁琐任务。尽管您可能仍需要处理电缆,但与塔式服务器和机架式服务器相比,它几乎可以忽略不计。
  • 尺寸和外形尺寸:它们是最小,最紧凑的服务器,需要的物理空间最少。

缺点

  • 昂贵的配置:尽管升级刀片服务器很容易处理和管理,但是在复杂的环境中,初始配置或设置可能需要花费大量精力。
  • 暖通空调(HVAC):刀片服务器非常强大,并具有很高的组件密度。因此,必须为这些服务器安排特殊的容纳空间,以确保它们不会过热。对于刀片服务器,必须妥善管理加热,通风和空调系统。

5、 服务器的特点与PC机、工作站、小型机的区别

服务器与PC机的区别

服务器与工作站的区别

6、 服务器性能评价标准

二、服务器关键组件及技术

中央处理器(CPU,Central Processing Unit)是是一台计算机的运算核心和控制核心。

计算机的性能在很大程度上由CPU的性能决定,而CPU的性能主要体现在其运行程序的速度上。影响运行速度的性能指标包括CPU的工作频率、Cache容量、指令系统和逻辑结构等参数。

主频:主频也叫时钟频率,单位是兆赫(MHz)或千兆赫(GHz),用来表示CPU的运算、处理数据的速度。通常,主频越高,CPU处理数据的速度就越快;

:实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小;

核心数:一般情况下每个核心都有一个线程,几核心就有几线程,但是工作,intel的超线程可以让单核心具有两个线程,双核四线程 ;

线程数 :线程数多当然速度就快,但功耗就大 ;

从英特尔品牌来看,主要有酷睿、至强、奔腾、凌动、赛扬、安腾和应用在物联网领域的Quark几大品类。PC多以酷睿系列为主,至强则是服务器级处理器的唯一选择。在真实的攒机场景中,确实有玩家将至强E3处理器应用在PC之上,这主要是因为服务器级CPU会比一般PC能支持更大的缓存和多处理(安装了多个物理CPU)。

英特尔至强可扩展处理器架构

  在服务器应用场景下, 常常会在一台服务器上搭载两个甚至多达几十个物理CPU,各个处理器之间通过高效互联互通,提升计算力。在服务器处理器缓存方面,一般提供了三级缓存。以笔者之前测过的Intel Xeon Glod 6140 CPU(2.30GHz、18 Cores) 处理器为例,L2缓存为18*1024KB,L3缓存为25344KB(L表示缓存级别L2和L3的大小也是特定系列中CPU型号的主要区别之一)。

至强E7 v4处理器

  当然,服务器级处理器的稳定性也会远高于PC级处理器,这是因为在服务器应用的IDC场景中,需要7*24小时,一年365天不间断工作,而酷睿处理器显然不具备这样的特点。除此之外,二者的接口也略有不同,拿几年前的INTEL为例,当时其桌面级CPU为775接口,而服务器CPU则有775和771等。

处理器型号相关内容更新很快,以上内容仅供参考。

Intel命名也是几套,内部一套外部一套,过两天可能还改名。

内存是计算机中重要的部件之一,它是与CPU进行沟通的桥梁。计算机中所有程序的运行都是在内存中进行的,因此内存的性能对计算机的影响非常大。其作用是用于暂时存放CPU中的运算数据,以及与硬盘等外部存储器交换的数据。只要计算机在运行中,CPU就会把需要运算的数据调到内存中进行运算,当运算完成后CPU再将结果传送出来,内存的运行也决定了计算机的稳定运行。内存是由内存芯片、电路板、金手指等部分组成的。

中央处理器,也称微处理器(CPU,Central Processing Unit),是微型计算机的运算和指挥控制控制中心。不同型号的微型计算机,其性能的差别首先在于其微处理器性能的不同,而微处理器性能又与其内部结构、组成有关。 CPU从存储器或高速缓冲存储器中取出指令,放入指令寄存器,并对指令译码。它把指令分解成一系列的微操作,然后发出各种控制命令,执行微操作系列,从而完成一条指令的执行。指令是计算机规定执行操作的类型和操作数的基本命令。指令是由一个字节或者多个字节组成,其中包括操作码字段、一个或多个有关操作数地址的字段以及一些表征机器状态的状态字以及特征码。有的指令中也直接包含操作数本身。 CPU依靠指令来计算和控制系统,每款CPU在设计时就规定了一系列与其硬件电路相配合的指令系统。指令的强弱也是CPU的重要指标,指令集是提高微处理器效率的最有效工具之一。 在计算机指令系统的优化发展过程中,出现过两个截然不同的优化方向:CISC技术和RISC技术。CISC是指复杂指令系统计算机( ComplexInstructionSetComputer);RISC是指精减指令系统计算机(ReducedInstructionSetComputer)。这里的计算机指令系统指的是计算机的最低层的机器指令,也就是CPU能够直接识别的指令。随着计算机系统的复杂,要求计算机指令系统的构造能使计算机的整体性能更快更稳定。最初,人们采用的优化方法是通过设置一些功能复杂的指令,把一些原来由软件实现的、常用的功能改用硬件的指令系统实现,以此来提高计算机的执行速度,这种计算机系统就被称为复杂指令系统计算机,即ComplexInstructionSetComputer,简称CISC。另一种优化方法是在20世纪80年代才发展起来的,其基本思想是尽量简化计算机指令功能,只保留那些功能简单、能在一个节拍内执行完成的指令,而把较复杂的功能用一段子程序来实现,这种计算机系统就被称为精简指令系统计算机.即ReducedInstructionSetComputer,简称RISC。RISC技术的精华就是通过简化计算机指令功能,使指令的平均执行周期减少,从而提高计算机的工作主频,同时大量使用通用寄存器来提高子程序执行的速度。 CPU架构是CPU厂商给属于同一系列的CPU产品定的一个规范,主要目的是为了区分不同类型CPU的重要标示。我们日常使用的台式机,笔记本等采用X86架构的处理器,属于CISC范畴,而ARM架构的手机、平板等则属于RISC范畴。 由于CPU内部工作原理内容较多,比较复杂不宜学习并且对于选购CPU没有太大意义,本文主讲和CPU性能有关的参数内容。

x86或80x86是英特尔Intel首先开发制造的一种微处理器体系结构的泛称。该系列较早期的处理器名称是以数字来表示,并以“86”作为结尾,包括Intel 8086、80186、80286、80386以及80486,因此其架构被称为“x86”。由于数字并不能作为注册商标,因此Intel及其竞争者均在新一代处理器使用可注册的名称,如Pentium。现时Intel把x86-32称为IA-32,全名为“Intel Architecture, 32-bit”。

“X86”是Intel和其他几家公司处理器所支持的一组机器指令集,它大致确定了芯片的使用规范。从8086到80186、80286、80386、80486,再到后来的奔腾系列以及现在的多核技术,都是使用一脉相承的x86指令集,既不断扩展又向后兼容。

三十年前,英特尔发布了第一款16位微处理器—8086,当时的著名广告语是:“开启了一个时代”。而当8086的光环退去之后,其支撑架构—我们后来所熟知的x86也成为了最成功的业界技术标准之一。

在8086之后的30年间,x86家族横跨了桌面、服务器、便携式电脑,超级计算机等等。无数对手败在了它的脚下。

目前采用X86架构制造CPU的厂家有三个,INTEL、AMD和VIA,由于VIA制造的CPU性能市场占有率过小,在此忽略VIA的X86架构处理器。

移动版X86处理器和台式机CPU没有本质区别,外观上或许感觉差异较大,但这只是封装形式不同造成,其内部参数性能比较没有本质区别。 台式机CPU

1971 年,英特尔为一家日本计算器厂商制造了英特尔历史上的第一块处理器——4位的4004。很快,在1975年,英特尔又推出了8位处理器8008和8080。

3年以后,16位的8086初次登场。在上世纪80年代初,IBM选择了8086的衍生产品8088作为IBM PC的处理器。IBM的这一举措给x86带来了巨大的发展机遇,并且帮助它成为了行业标准——直到今天。

英特尔执行副总裁Patrick Gelsinger说:“PC行业发展的革命性转折点是1985年32位处理器80386的推出,它推动了整个行业的发展。”

386 之后,19**486诞生了。由于当时数字不能作为商标,英特尔从1993年开始改变了产品命名方法。第五代处理器被命名为Pentium而不是586。

所有的基于x86架构的芯片,开始于8086,一直延续到今天。当然他们的命名发生了变化,运算速度也有了惊人的提升。

x86为什么能一直成功,击退甚至完全打败其他的处理器架构?从一开始,x86的诞生就可谓生逢其时。1978年,计算机从巨大、昂贵的中型计算机转变为小型、便宜的微型计算机已经有几年了。台式电脑成为变革的前沿。

更重要的是,x86证明了戈登·摩尔在1965年提出的一个定律。戈登·摩尔后来成为英特尔的主席和CEO。摩尔说,在成本不变的前提下,微处理器每过二年其运算速度会翻一番。他的预言后来被称为摩尔定律,30年来始终被证明是有效的。

8086及其后续产品还一直与电脑业的两个大名鼎鼎的名字紧紧联系在一起。1972年,比尔 ·盖茨和保罗·艾伦就尝试用性能很弱的8008开发Basic编程语言,但没有成功。但他们最终在性能强劲一些的8080处理器上开发出了Basic语言,并在1975年把 Basic语言应用到Altair8800 PC。

这成为英特尔和微软亲密关系的开始。微软从那时起,便创造了一个庞大的软件帝国并推动了整个行业的发展。英特尔首席技术官Justin Rattner指出,x86体系架构的灵活性是它过去以及今后成功的关键。他说,虽然人们通常将x86指令集看作是某种一成不变的规范,但是不管是指令集还是体系架构本身,都在过去几年里发生了巨大的变革。Rattner说,x86在上世纪九十年代曾凭借其内置MMX和SSE指令集扩展,一举提高了多媒体和通信应用所需的速度,从而击退了其他专业媒体处理器对它发起的挑战。他还举例说明了x86体系架构在过去几年中新增的一些改进功能。比如在内存管理和虚拟化方面的硬件支持等。

Rattner指出,同样重要的是,英特尔在x86体系架构发展的每一个阶段都保持了向后兼容的特性。指令集的发展以及产品系列内部的兼容性大大扩展了x86体系架构的应用范围,将个人用户与企业用户、便携式电脑和超级计算机都包括了进来。

加州大学伯克利分校的计算机科学教授David Patterson说:“认识到x86体系架构并非一种凝固的设计这一点很重要。30多年来,它们每月都会增加一个说明。现在x86指令集的说明已经达到500多个。每一代都会增加20到100多个。前后兼容很重要,它也一直在增加新的内容。”

1)高性能原则

保证所选购的服务器,不仅能够满足运营系统的运行和业务处理的需要,而且能够满足一定时期的业务量增长的需要。一般可以根据经验公式计算出所需的服务器TpmC值,然后比较各服务器厂商和TPC组织公布的TpmC值,选择相应的机型。同时,用服务器的市场价/报价除去计算出来的TpmC值得出单位TpmC值的价格,进而选择高性能价格比的服务器。

2)可靠性原则

可靠性原则是所有选择设备和系统中首要考虑的,尤其是在大型的、有大量处理要求的、需要长期运行的系统。考虑服务器系统的可靠性,不仅要考虑服务器单个节点的可靠性或稳定性,而且要考虑服务器与相关辅助系统之间连接的整体可靠性,如:网络系统、安全系统、远程打印系统等。在必要时,还应考虑对关键服务器采用集群技术,如:双机热备份或集群并行访问技术,甚至采用可能的完全容错机。

比如,要保证系统(硬件和操作系统)在99.98%的时间内都能够正常运作(包括维修时间),则故障停机时间六个月不得超过0.5个小时。服务器需7×24小时连续运行,因而要求其具有很高的安全可靠性。系统整机平均无故障时间(MTBF)不低于80000小时。服务器如出现CPU损坏或其它机械故障,都能在20分钟内由备用的CPU和机器自动代替工作,无须人员操作,保证数据完整。

3)可扩展性原则

保证所选购的服务器具有优秀的可扩展性原则。因为服务器是所有系统处理的核心,要求具有大数据吞吐速率,包括:I/O速率和网络通讯速率,而且服务器需要能够处理一定时期的业务发展所带来的数据量,需要服务器能够在相应时间对其自身根据业务发展的需要进行相应的升级,如:CPU型号升级、内存扩大、硬盘扩大、更换网卡、增加终端数目、挂接磁盘阵列或与其他服务器组成对集中数据的并发访问的集群系统等。这都需要所选购的服务器在整体上具有一个良好的可扩充余地。一般数据库和计费应用服务器在大型计费系统的设计中就会采用集群方式来增加可靠性,其中挂接的磁盘存储系统,根据数据量和投资考虑,可以采用DAS、NAS或SAN等实现技术。

4)安全性原则

服务器处理的大都是相关系统的核心数据,其上存放和运行着关键的交易和重要的数据。这些交易和数据对于拥有者来说是一笔重要的资产,他们的安全性就非常敏感。服务器的安全性与系统的整体安全性密不可分,如:网络系统的安全、数据加密、密码体制等。服务器需要在其自身,包括软硬件,都应该从安全的角度上设计考虑,在借助于外界的安全设施保障下,更要保证本身的高安全性。

5)可管理性原则

服务器既是核心又是系统整体中的一个节点部分,就像网络系统需要进行管理维护一样,也需要对服务器进行有效的管理。这需要服务器的软硬件对标准的管理系统支持,尤其是其上的操作系统,也包括一些重要的系统部件。

下面以CPU-Z截图为基础,给大家介绍有关CPU的主要参数

上图为Intel至强E3-1230V3处理器的截图 主要包含的参数有以下:

1.型号 2.处理器架构 3.TDP 4.针脚 5.制程/工艺 6.步进 7.指令集 8.频率 9.睿频技术 10.前端总线 11.缓存 12.核心数/线程数

正式发售的CPU均有其自己的型号名称,这也是我们购买CPU时最直接记忆的信息。 CPU-Z提供了两个项目来确定该处理器的型号,一个是“名字”项,一个是“规格”。规格一栏为主板根据CPU内部编号来识别出的相应型号,而“名字”一栏则是CPU根据其他参数规格来推测出的大致型号。 有人会以为这样做岂不是多此一举,其实并不多余。 实际上,并非所有CPU都有对应的型号名称,主板仅能识别出内部编号而不能找出对应的型号,这类CPU通常是测试版样品,和正式版CPU参数有时差别较大。这样的CPU用该软件识别时,则会出现如下情况:

处理器型号有一些后缀,比如M,QM(MQ),XM(MX),T,S,TE,E,EQ,K,H(HQ),R,U(UM),Y等。 M代表移动版处理器 QM(MQ)代表四核移动版处理器 XM(MX)代表四核至尊版处理器,AMD的某些MX型号处理器仅为加强版的意思 T、S代表节能版,S还进行了低压处理,节能效果更高 TE,E,EQ代表嵌入式处理器 K代表不倍频版,超频专用 H(HQ)代表BGA封装的移动版处理器 R代表BGA封装的台式机处理器 U(UM)代表低压型移动版处理器 Y代表更激进的低压低功耗移动版处理器,面向平板使用

每一代X86 CPU架构是CPU厂商给属于同一系列的CPU产品定的一个规范,主要目的是为了区分不同类型CPU的重要标示。CPU-Z对应的“代号”一栏,即为该处理器采用的架构。这里所指的架构并非大架构(X86)的不同,而是制造商自己更新换代的小架构名称而已。 架构决定了该处理器的新旧程度,比如Intel的第二代酷睿i系列架构为Sandy Bridge,第三代架构为Ivy Bridge,第四代架构为Haswell和Crystallwell。 �

标签: 三电平的支撑电容温度传感器型号86x86mm电容上限任务怎么做固态继电器移相

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台