资讯详情

将使用Tkinter编写的带图片的程序打包成exe文件,并且实现图片内嵌

程序编写完成后,我使用它Pyinstaller包装项目,最后得到一个exe可执行文件,但由于项目引用了一些图片,需要将这些图片文件和exe文件只有放在一起才能正常运行。

这会造成很多问题,比如复制过程不方便,会造成安全隐患(其他用户只需更换图片文件即可修改内容)。查阅资料后,我决定嵌入图片。

首先,编写函数,将图片转换为base64编码格式:

import base64  def pictopy(picture_names, py_name):     write_data = []     for picture_name in picture_names:         filename = picture_name.replace('.', '_')         open_pic = open("%s" % picture_name, 'rb')         b64str = base64.b64encode(open_pic.read())         open_pic.close()         write_data.append('%s = "%s"\n' % (filename, b64str.decode()))      f = open('%s.py' % py_name, 'w ')     for data in write_data:         f.write(data)     f.close()

然后,将这串编码写入相应的文件:

if __name__ == '__main__':     pics = ["fomula.png"] # fomula.png是图片名     pictopy(pics, 'fomula') # fomula是写入的文件名     print("成功写入程序!")

“fomula.png是图片的名称,我们的图片转换后的代码将显示在fomula.py打开文件后如下:

fomula_png = "iVBORw0KGgoAAAANSUhEUgAAAuYAAABrCAYAAAA7KEd8AAAgAElEQVR4nO2dTcxdVdXHr69arIrEihFrxY9qomKJBD ColVihWhCQxrSEFITmJQB6YgRE14mjByRDsoEkxJSCWkImBgIBINCGjANCH6QqGiQCErFqCUFHPj6O7ied3M53 fcc8699/dLbu7zde9z7tlr7/3fa6 19lv /R9mIiIiIiIyKv8z9gWIiIiIiIjCXERERERkEijMRUREREQmgMJcRERERGQCKMxFRERERCaAwlxEREREZAIozEVEREREJoDCXERERERkAijMRUREREQmgMJcRERERGQCKMxFRERERCaAwlxEREREZAIozEVEREREJsDbxr4AkWXm0KFDsz// c d3 eGG27o4WpkamgfMjbaoFShjUwLhblIR84999zZZZddNvZlyETRPmRstEGpQhuZDoayiHQAL8O2bdvGvgyZKNqHjI02KFVoI9NCYS4iIiIiMgEU5iIt f3vf589n3nmmSNfiUwR7UPGRhuUKrSR6aEwF2nJiRMnsuePfexjI1 JTBHtQ8ZGG5QqtJHpYfKnrC14Ch577LEsvu5vf/tb9rP3vve9s/POO2/21a9 deSrk7H52c9 Nnv66acz 3j55Zezn334wx effGLX5x99rOfHfnqZB3QBqWKBx54YPbss8/OXnjhhdm//vWv2dvf/vbMRr797W/P3ve 9419edIChbmsLU888UQ26X3hC1/IBjGE tGjR2cPPvhglghT5UF48cUXMyEvq8nx48dnL7300mzXrl2ZjSCSfvSjH2U/qyOKtA/pijYoVTzyyCNZG19xxRXZnHXXXXfNnnzyycxO9u3bV/l6bWR6GMoiaw0DEqIcGNS2b9 efR3be2W8 uqrs02bNi30 mRcsAcEEfD8gQ98YMNzWYX2IX2gDUoV7PKGIylKHmojy4sec1lb8mq2smXMVuDHP/7xyte/9tprDmgrzDXXXPOG7//6179mnkqEUR20D mKNihVzB/qw64KaCPLi8Jc5D/84he/yOLNGaQuvfTSWrF5xKXXHfxkufnpT386e/zxx2dnnXXWbPfu3bVeo31In2iDUgaLNuyDeazJYUHayPRQmMvac ONN258XcdTLutDxPQCOylOYDI02qBUEXHl8K53vWt22mmnjXxF0gWFuaw9sRWI15zEz3vuuScb3KqSP9lSPuecc4a4RBkJYnojvhePJQ/CnQ4cOFD5Wu1D kAblCrwjvPAa/7oo49mi7l//vOfs71791a VhuZHiZ/ivwXqhxQZoqSU1RsqYK/e8c73jHAlckUoITmli1bsq3fiOMsQ/uQvtEGpQxCMKOYARXH6qCNTA Fuawthw4dmt18880bJ5/x/Mc//jH7 nOf 1zpa/FMwObNmxd7kTIahDjddtttG22NEMK7xG5KeDCL0D6kD7RBKQN7wEYi1Ani6zphmdrINDGURdaWs88 OzuY4fDhwxs/w2N 0UUXVYaxPPPMM9lzVS1hBr6f/OQnmeBPDzH6zGc M/vmN7/Z8RPIImFio80OHjyYfZ8e3FFFXftgMfjwww /6QCZHTt2VAovWX20QSnjzDPPzNrqV7/61cYOCou2usmfdW2E937qqafedIjRhRde6ImhC0BhLmtLncmtC8Ss33vvvVmlF07qQ4gj1DmpjUMh LpODKCMQ53DObqAHVBB4d3vfvds586dmQhCJN13332Z1 uVV17xBNo1RxuUMhDFixbGd9xxRxYWgxCPQ4wQ6g899NDsyJEjGz T/jCURaQFVaelMbmRRBrlF8M7TgwgYhyvBoNdhNHIalFlHyTwsThDEF155ZUbnkkmuIsvvjj7miQukbZog1JFlY2EKGfn5uqrr94Q4NgK4Z54z9ltkX5RmIu0oOq0NDxODFoMXnnbhEyG8Lvf/W5h1yjjUWYf7JQgioCwqfma TH5EVbgwk3aog1KFWU2glccUY4TKW93 YwzzsieCYGSflGYi7Sg7LQ0BrQ4QbQqXIaSVrJ6lNkHOQcs2tgarortPHHixCIuT9YAbVCqKLOR48ePZ8/kQ5UduBd5CdIfCnORFpCQVbQFGGWqtm/fPuQlyYQos4/YJfnkJz855CXJmqENShVFNsIuSXjCv/SlLw19WWuPwlykZ6LkYlm5qpMnT2bP27ZtG SaZBqQEBwepqKkujR0wKoY0jfaoFTx61//OnvmlNkib/nf//73jb RflGYi7SAWsKUqpqHSY8tYiia0Jj0YmKsU2tWlo8i 6A8J5RNZuHNLEvKEqlCG5QqimyEsohQZiPPP/989qyN9I/CXKQFRaelnTp1KnsmYaaIdNIri92T5aXIPki2gjL7iAlPT5R0QRuUKopshNhzOP300wtfG6EuW7duXczFrTEKc5GWlJ2WFlVX8uAwCCCpRlaXNvZBtYw49IPa9yJd0AalijIbicor81DRh11fFnfWue8fhblIQ KEtapqBkWvJeGGAc2TP1eTLvZBtQwgxMlDO6Qt2qBU0cVGfvnLX2bPlAOW/lGYi/QIceWUSWSbD89TCt/ff//92deXXHLJGJcnIxNVMCJBOIWJ8sknnyysGyzSB9qgVHH22Wdnz7FzknLXXXdl8xulNnUuLQaFuUhDyEYvS3iJ7V OtA5xztbf97///ezrr3zlK628FLIclNkH7Y4nkl0T7AOwEb5m0YYgYtFm7oF0QRuUKspshBKJ/I58qPCsU7SAk0BZuJF7sHv37iEvd61429gXILJscChQ2amfeBFOO 202eOPPz47ePBg9jO86HgYLrzwQreHV5wq 9i3b1/mdSLXICY9xNCnP/3p2de 9jUFkXRGG5QqymyE9r/yyis3FmuxgEOs41jSU75YFOYiLSib9ICEGB54GQ4fPpz9jK1hJ7z1oMo Lrvssuz5gQcemD3yyCNZIl78TKQPtEGposxGmKtYwMFtt92WhbUYvjIMhrKINIT4urq1W/GOs 1HWapIqmLbmIFOVpMm9nHeeedt5CSE55Ja HgzRdqiDUoVTWzkU5/6VPbMwUMRnsmCjhBN6R895iIL5uKLL54dPXo0i82LhCsmQxG8UuysMMGxXXz8 PHs54Q8iQyBNihVUNTgueeey awW265JdtdQdSbILwYFOYiDTl58uTsnHPOqf33eM2vu 66zBtFzVgTP1ebpvaBKKKmPVvFnMJnDoJ0RRuUKpraCGFOlEc8ceJEljxsWObiUJiLNISDFfJOS6sCr4OsPm3sg0nOiU76QhvMJ LpL7roorU/GKeNjbBgc9GWz80335w9kzTbtR8pzEXmwLPNdu75559fKKbLTkuT1WaZ7INYYQ4DoTReHKFthaDlZ5lskAT4xx57LNcGh0yIj s499xz10KUL5ONrAIIcsJ8WPzt3bu303spzEX SwxkbPHhTeDr QGty2lpMk1o06effjpr82uuuab078ayDwT2vffeO9u fXujcnbkNgDXyWeLetWELJDvsH///pX3ki4Dq2yDUZUqzwY524EwvyG47777siokq155xnlsHOgPnGHCjgz3t8sO SjC/NChQ9nKmWoVZYMQkBlOwkERrLy3bNky 8QnPmEZn55hAKWSCIcM0MGBhA/uddukD96T t7PPvvs7KWXXtp4X9rxrLPOmu3YsaPSoElS sMf/pB5YHikr fEsrZ2gPcgvAvf 973Mhvlf62DdyW48cYbG/09dlBnAIo Xxe8WnkTaJ9tjy3efffdmUBlLKqKtxzTPj74wQ9mMcBPPPFEVhmBWM 6fZB7GX8bJdBuuummrFIQ4mhZhPm8959KEW08UyGCeY8YfwAb4NG0jjdzFG2ya9euxpPxOtsgYw33v6uIqQP3iHtV53p3qNN5scYTk2d+nzgPPY67JD88Ic/zNqwaD6Zh7Z/9NFHZ7/97W9bzS/8ntceO3ZsuYR5dJC6xM0McZ7e4BB5bE+xSuGwhAMHDvR/0WsI9/b222/PjJNEDyZBTgpjUGYgxfiaxlKliywEPgP7GWeckb0vbcdAyAOxkDfhYjs8EBQchhGvf+WVV2a/+c1vNl7//PPPb9RfbULqPeDkswcffDDrpOmAxrXyv+X1A0kWNaHStil9t314/1577bXaB2aMaR/0M0QF/xchRx+kj1Z91htuuCH35zgzmozDY8IEi7eT62UsQrxefvnljRcUqQhmssWG3v/+92e/e/HFF7MxiP+B6Lz00ksrvYm0wUMPPbQh7pv2hXW3wWCIcAp0AgufqjaKNqFNuYfYGxVIsIsYY3AMtJlf2oDtcy1NPNurOo81WVywI4NWYb6oS6p5uDeEWqFTaPsXXnih9vzC+MQ977IYGlSYx2okYKulDtu2bdsQdGSMBwwUccoiN4IbSnyPnvPu3HnnnbkrTbYxjxw5snGvm3isQgjk7ZRQPpBtTQYhvFkMSPPxr2SDhzC76qqr3jAx0wFuvfXWDWHf1UPAa/HOcc2pTXFaGgP1VGByZBCqs/tUFwYj2qMoMYj24R7Pi+cqEENs9SGo80Ac8XmYDBfZ9oxDMfnW9fjPM5Z98LmvvvrqjQM/OCK7qdeYz8910x7c664swgYD7i2OF0IQ9uzZ02nrnfcKUZ4XwoOIiTEI+yj6X+lCoS3rboNcL2B/iw6nQGwzX7H4qSLahPaY966HB5bPvEidQX+KUDOuhTm47T1alnksD+43u/XsrkeZ4ao5nX6FduHzIqyZL5iv6hCaJ6/t0/ArHIxl3neuEZ2Lw6itBhn0gCEMA0OLySDdRiyD1V3AVto86YdnRSPdoJ1i0mFbNwXBhMFDCOimUNd7HgZ7RH+A16oIBGGet4wwmAAh1xW2AwFhEIcqrDLRlhdccEHWpxig8h4h6prUYmcRznHfTAxF7xv3OA6zyKOPtsfbFxNeF4//mPbBxBGTTsSL1iWO18YrPOUwlqiggShnMdZFwNE+MUEzzuR9bn4W80uEWMy/B5NyxExT2SPGwqasqw3ydwj6SMIcwvOMMIUqIc2CPvRJXsgLcx9jI7Bj3Be0G7aOc4EQM/on9xS7ZywkfKYLyzSPsYhioUeFE/oZ/R9vNf2sTj8h+ZIQWfomi8eq02/T/xvh1XltH7tFzHssFqrgellMtL3fg3nM+eAYGx8cY2PlUZcQ2wwCVRNJXbEvxbBCBdoq735/9KMf3Wg/BHTdyg5V3rR0Z+TVV1990+9ZpQ6ZuMNAEN5hYg7539F5VxHasWrbORbXTKpNRF1VgheLAu5z0XZzX22PMAiv6fyisylj2gf3nkUKExfhFHXFXXh98B5OOfGL+YLPBjt37uy8gEjnm7LJOkJb8uAaIk457jeLwPDm1WVdbTDNX2FX7vTTT1/0JWZwr+ssoPAiQ5ljgM9IH0L8dQH7Zp4timVm8dhXxaQpz2MIV0LICA+inSL0BPugHVgkNVm4cv92797deLw4depU9lx2T3jPuiGAhLNwzwmharOzMpgwJ9QE8JamHq28kIV5wnC5KVUsW9zUFImJpshI8SpFe7Ka7Yt0Z6TroE14Ux9QUo4BLZKd1h3i9qDve/Hwww9nzyQWd6Ws7eNUwyKvaVPGtA8GfLxgLJTqhG6xqKL96sYzj0mML00n5iLSEEhiuotIx6C82Oc+QnXW1QZj0Y8oHSovLGK083ba52HBVTeZtUnscsD9+dOf/rQRogIIUJwceMUXuVCe0jxGm3AdEbcNUT6TBGN2Ytv2C7zkU4C2pCJW2wiOQYQ5K8yIV0aEp8Kcr8uEOSuqEOashvLA4AMaVtpTZ0sy7TRlk1xTwoibhkkETz31VPbM4ox40T7ANrFbPPmIRz7vUJ6eqZGGovVZ/zq85bRbW8FYp+35P+HtaHLiXRlj2weTGfeuKp4xYrXrJDWODdcaY36Z97IJtBOOhkjiY17Jm/wjRIG/XcR9WmcbDLivPKgYsui8sNAaZTshTYjQhDre5rQCGSI0cmR4bVcB2pSxbSQqKmH70be5D0MsSuoQi/CqvEd+jz6pA5+vbQTHwoU5xomXBoOMbbsmCUesqIOizsWAAG0F3dRpWsIuj7rlglLKPI+s9NMDI7oS4gyIRW46YBH7GdvDl1xySa8DHnbLCj+uryh5cdUJbznelz4Jb3lbT07dto/YQP6uz4lgTPtgguf/lu1cLZMohwil67vqD3Z7zz33ZJMl1ReYK0JIhhc3tvip+rII1tUG8yD5kLaIEJJF8Nxzz2XPfSQ5Q+RnVC2qiJFOBShjGyEqY/a/MWwkxp50UUK/YwdjSvkttAu7dMwjRVEcOC3THMkq+LxNQrZTFi7MSXKhURgAoyHSBqESQxmpdz1vkI5Me6Diw5QaexlJ26PMy1A3qaIuVDkAOm7dBUTE6bF4o8PgXcPz0rcNRCxl0yS7VSISo2ifPr3lLNwZvJouqtu0fezI1AmJa8KY9hGTK2Ms92R+4g/Byfib/i6qFzTpb0ORhtJFJS/auuvJpXx+RCRzBvGfTMQRMhO0cWA0Yd1sMCr25IVPxW7rEJ7brnMC4194fNEhVTsD4XlFnPFgvhw7zHYMG6GNI+yHhRgPqn1NUaeRMMrCnapzaMnY0YjQGxxTOCTrhjt1qXqzUGEeSS4MsEWGnJfklxKDMTdk/r0joSHKsE09brItVQl5fVLVHouALGzamTau66ma30WIQe8f//jHQjo9nTFE4KIPw5giUdkgMvz7gmQkaLJL0rbtY1txERPkWPYRyWgQHroUhCcTY54IhSkkgKWkooHPQ5UFRDgeSmwvzlKIcnJNdwFoI7zWzBnYHAnnwPvxc7b6+b9tEsjqsI42CCwOEfBRfYnFFn+L/U113p4/FA07/O53v1trMXj99ddntozHPsq4ElMfXmMKKIzhNR7aRvh/9DP6FotSBC59LMqrsosw9k5CwDXQPuzg0laRfB6waG96+FhbFibM6XxkakNeeTxuQJ34m+gYdOL5CTkqONDwfXrx5HU4vGXRhPcKUd7kwKJ01RqTNO/DY1FerzisYWjqhDLRT8r+rss9YYLh/fsOLWCMiLKYTcJY2rZ9eLEWVb93LPsI5stE0m5FQilIkyLLGMoG0zEHb1ue8MaThWBnwVFWb3yeKL+IKJ9/X+waby8JW9gTO72LSCRbNxtk2592xzYQYyHgGe/z6kVPCRLR0Ri0Gf0Iu8A+uMd1YumjDCyk1Ue4F4xbtBP3gf+xdevWwYT60DaCNkv1Wex28mCM4oGnmhzCqEozhlCnjVhARr4Tu1pxwBBVeGKuGmKHcWHCHE9YlFXLE80RX1YWo5x6T9hmWLcjZccgnajr1ALv4vmJibKpKIdUIIYXJk71Y0XO5+jbXni/dbTBqCLRdzY/YwTiqmkyadu2X3Qp1anZRyoMloV0zEFA5E3QceYBCzHaNC+EZ56YdIHX5v09PyNZLxZ7dd63Ketmg7TV1EKl6jLvySek4cc//nEmatlZbuLp5z6kbZNWJgmnwlBCfWwbieTfIK1Ww2MsoR6nfhZVrYqTy1moLbr+/kKEOUbHB0gTPtsQiRtQp9yRdKfotMd5oo5rW89P1CnGe9VUlOfB69l+PnjwYPY9E2zR4NNHMm3flIUrlf1ukacuxvvHgUJ9bjmn3vKuCdtN2r4Oy2YfY///Pm0wTTgvG4tYzMWBQVW7AoC3MmJdET1FpGc04NEba4tdG5we4fmlmgxzV1mtcQ5RIp+h6G/mvchx2idj7bxQT5OUU5bBRnC+kdxLyFiRkyD9bOlpn1FOMRXqiyqHGJWguMaieY4FJn9DOy1i0Z6yEGEeiXx4PKoEV1m5vRhw6xwstMoMWZUl9ZiXlQ5KDwJoCkZNR4st5b7alveJkmhlk/W6TzBNCG854WJ9Et7yvsrS1Wl77K1O/WHtYzzalLWrU9Uj9cSXCf70d4vIt9EGx6GoPGYbENs4HhGQRcIc8RZx5eEFL6vJPx/2gnOBmGzGs6Kd62WwEfom94rH/fffX3mAUl7YC1X3oszpoogyqVVllintyHVwTVXzVpdS0r0L8zjOvSzhE+oIqCi/NLUEpVWGThHx/0VtQ2cJyrxPeTDoREIa8YV5xh2HQnQRbHVrjUox4S2HricUpqTe8r5qOacUtX2c2lZVq3ZZqRsvPmXSz8COaZGQSWPR64j5tPJHeohQ3df0hTY4LHE9iOS+nXtlC8Jrr712Q1wj5JhL8YKHOOVRlBvHdaZe27bHuk8BnIGIWYRshKrwSBcsaIgirZiGvQxxH6pspG5EAdDmbRyX0KswT+P48hI+m4D4C8/Cuh8aNPTKODwCGFZeTc+oG4+AbxoykG4ZFU26seMyL8wjS37Pnj2Foj1CbIoOo5L6xKE9eHr6nNSoyBB1bevaTx9tH/kQi47zHZI0D6ftJDAlGGvijIQypw1JdMAirE5dYca0qLJQdhpfWneY1/SNNjgsUXWnqiwzEKIC1113Xa33LluEzIvrNOExjaXGHqj2UhZTvuzRAvPiOk2CTcN2uA9lMeVD3Ieqk+jrLuqB+YjP1IZehTmiiwm3KOGziLybEYdMwNAHutx6662ZR6NN7DOxlhjeVVddtfHaWOmVvVefW21diYMIaEuSXdK2Sb2deds+kSAB8+EzUeKSwQgvV149VbxkdNiyyZZyRnkdl3sfi7kdO3bU/LSSB30ytg7rHihU1vYpcWhYm2TSLm1P/4o4zlUhJoq+D6wZkwsuuCBrzxAv8wt4RE7Y5nyZzSIbZAyj1n2U2M2LEY34VuBv68xh6XZ1nbhTbXBYYge4zuFH5EvRLnk2lxI2EqK/DnXF6dRKCPbNfBJs0YKFaktDlpWM6iuUYi3r9xHyUrUzFI7ltk7l3oR5iC6ImKK6EEOV3gwGyPTEz7ItzUVAJ257WBGvZZWUvpbPUlWeqCgTeAyi88RJWCxUEDtsH7M9F5U0mnrLI14Zb1GUzSqiLKmUDoQHlXJWLNq4Lga5tKb9slWjmBpxGie23GcpUhbvtH/bZNIubY+Ii8XgopN3hiK8v6u0Q0T7IfbwcLP1T9vGQj3qjccY1KTiB/YWpxWT40Jt/nhfPKpMyvG+e/fuLX2vEPEh0oDx8tSpU6U7TNrg8CDwsJsq5xdhddgGNgfz4wivZ96K0x/bjotlFVqYb2NxEOKUReKqzmdlFVoiTj8WLIs8DI15I84xIAE9r4wni/44b6VK+8S5H2133XoT5rHt3YbNmzdvfI2RHj58+A2/52ZxQxZRdWKeWOm0qRRBx8WgOIQgBUOjI+eV2IlEyKmI8gDDwwAR4rGSBYRaUZZ4GXzOrl4iDh+KuD0m2PQAAK6VAYwOZk377sSWft87D+FxaJpM2kfb87vIbWHgXAVRFP2SOM5VgvGQhRfzChNmOH1i67+NWEEQMYewOMRD1+Z9U4/8PNhl6nDIC0HUBoeHNmU8Y/wom2eZ04gbjypDx44dy8aW8KQTmoA2aHL6Yx3KKrTwzP9fVWE+T1mFFu5HmTCPA51SQnPwTN8NyB9JbYH7v2vXrmxRxvvgTI065vRr2p4FGeMEpburiIM122qRt/z7P7R65YpCmSM6X5uyPAz4NOiBAwfe8HNi14oOJeDUS7ZDF10XU1aTRZdLXDXifuFd379//2TCx9oQ5wAwWdSNi10E2mAztMHhYQ7etGnTm+bmPGL3HzEXuQC0FUKNnbohnWiIU9DZNKsMMSpbNM9TNFZxv8mTnC9MEiFGdSoN4vXHy98lCmJhBwwtK6x08Ly1gZUdHTcFTzGdu+hIbKizApPxYWAgHCe2syIHgQGBlX1scQ65yFrGQ2TGhHuFF5Z+TsnGvrZG2S3j/SI3IwZl+j8DfXgV6x7pXef/EXoBO3fu7Px+XdAGm6ENDg/5LCwgqsQdTMme+xbkQ9tIn1S1Cf2oa1+a371oAzthLFS7LODe+r//odNVLCF0TsJL5h8///nPM8NkS+4vf/nLm36PZzvNOsfI3/nOd258jfeAxuBv4ndUGOF7Vupf//rX3/B461vfmv2fK664YqxbITXBZtjaZAuT+sZsmZEAQiz2Rz7ykdnnP//5zH5IVKlTJULGA89HhMUwgH7oQx/q/J6E38VBR0xwjBWU1mKQxmbIo+Fn3/nOd3r4BLPZD37wg+w92ab/1re+1ct7ynBog8MSB1JRUezLX/7y2JczGkPbyLqBBmTRQ1hMlz69dqEsrAyPHj3a6rXzWxNsR+ZVFgFWdxj6TTfdVHgELmEzbK9VJRrJNIjkodgyY3uLiiWrECe6bkRuB7BD1nV7Ok0s40CwiFnuu2/zf+6+++7MgTD07oz0izY4LHG/yW9ZVBLh1BnKRtYR7u0tt9yS3c+ufWLtQlkwxKK64IjoogEyr7g98UaRBELlErLS06SQKB9pGMtqEANaJJSsakmrdYB2o5QVAoMtbpJSzz///NZb2GEb6UK9z1hUxh/qv0foQCz8ZXnRBoeF+00SIfe67Ij4VWbRNrLO3HnnnVmibh99Yu2EeVH8EAH7ZdVYygr/RzWWb3zjG2/4PQav0a8eCHOSgZZpUpI3Q/8lyTuSvcgf6DpZR1WAvmvvEvJAYjnePs4ZWOaEQfl/tMFhcU5+nUXZyDrTZ+L72gnzIqiFPF9/vC7EChJHHqK/6vSolDqHD8l0CE/DVGv2SnP6TPZKd1P6ZL7er6wW2qAMyaJsRPpBYf5f+qrGkleHvYprr7221f+V4QlPw9SOnpZpEBOeAkbGQhuUKrSRaaMwn70exgJdDhWKMBY85cSwp0kWfH3w4MHZnj177AhLTtQ2bXIcs6wHJJcBScEiY6ANShXayPRRmM/6CWN5z3vekyV7clodZfSOHDmS1U4lDjn+RlG+/JA8BJZElHnYOQN3U2QstEGpQhuZPgrz2ethLE2PmAfCVsikp+4nHvE4dIbs3LRCCx0BTyvliQJqv1qiaLnA0xBHMpsTIPPEom3r1q0jX4msK9qgVKGNTJ+1q2M+D2EsPK6//vpaf8SR6wkAAAGuSURBVI84oxh/HNmKp50ECsJgEGt33HFHll1P3DjfRxjLFE/SEhEREZHpsNIec0TxM888U/o3nAS2ZcuWwoOCYPPmzRthKKdOnco87ISphBgPCGWJUnqUlcILP1+xRUREREQkj5UW5ohiDhOoA6d4FkE8cQjzorJWnOKJB51QFgQ6XngEeVqxRURERESkiJUOZUkro3ShrC45nvZjx47NNm3aNLv88ss3wlduv/32jQoeCHtOhEohQbRNXLuIiIiIrCYrLcwXDQI8PO379u170+/xmp84cWKjZujJkydnL7/8chbqsn//fhMIRURERGQDhbmIiIiIyAT4n7EvQEREREREFOYiIiIiIpNAYS4iIiIiMgEU5iIiIiIiE0BhLiIiIiIyARTmIiIiIiITQGEuIiIiIjIBFOYiIiIiIhNAYS4iIiIiMgEU5iIiIiIiE0BhLiIiIiIyARTmIiIiIiITQGEuIiIiIjIBFOYiIiIiIhNAYS4iIiIiMgEU5iIiIiIiE0BhLiIiIiIyARTmIiIiIiITQGEuIiIiIjIBFOYiIiIiIhNAYS4iIiIiMgH+D7AODApG94LPAAAAAElFTkSuQmCC"

之后的问题就是该如何使用这段代码,从而不需要在打包后的文件夹中存放图片,从而不被其他的使用者篡改。

我的思路是:提前把需要使用的图片依次转换为64base的编码格式存储到代码程序中,因为代码程序其他人是无法篡改的(反编译不考虑),而当程序需要调用这些图片的时候,再将编码重新转换生成图片,最后在关闭程序的时候删除即可。

以下代码展示了如何将编码转换为图片:

import base64

fomula_png = "iVBORw0KGgoAAAANSUhEUgAAAuYAAABrCAYAAAA7KEd8AAAgAElEQVR4nO2dTcxdVdXHr69arIrEihFrxY9qomKJBD+ColVihWhCQxrSEFITmJQB6YgRE14mjByRDsoEkxJSCWkImBgIBINCGjANCH6QqGiQCErFqCUFHPj6O7ied3M53+fcc8699/dLbu7zde9z7tlr7/3fa6+19lv+/R9mIiIiIiIyKv8z9gWIiIiIiIjCXERERERkEijMRUREREQmgMJcRERERGQCKMxFRERERCaAwlxEREREZAIozEVEREREJoDCXERERERkAijMRUREREQmgMJcRERERGQCKMxFRERERCaAwlxEREREZAIozEVEREREJsDbxr4AkWXm0KFDsz//+c+d3+eGG27o4WpkamgfMjbaoFShjUwLhblIR84999zZZZddNvZlyETRPmRstEGpQhuZDoayiHQAL8O2bdvGvgyZKNqHjI02KFVoI9NCYS4iIiIiMgEU5iIt+f3vf589n3nmmSNfiUwR7UPGRhuUKrSR6aEwF2nJiRMnsuePfexjI1+JTBHtQ8ZGG5QqtJHpYfKnrC14Ch577LEsvu5vf/tb9rP3vve9s/POO2/21a9+deSrk7H52c9+Nnv66acz+3j55Zezn334wx+effGLX5x99rOfHfnqZB3QBqWKBx54YPbss8/OXnjhhdm//vWv2dvf/vbMRr797W/P3ve+9419edIChbmsLU888UQ26X3hC1/IBjGE+tGjR2cPPvhglghT5UF48cUXMyEvq8nx48dnL7300mzXrl2ZjSCSfvSjH2U/qyOKtA/pijYoVTzyyCNZG19xxRXZnHXXXXfNnnzyycxO9u3bV/l6bWR6GMoiaw0DEqIcGNS2b9+efR3be2W8+uqrs02bNi30+mRcsAcEEfD8gQ98YMNzWYX2IX2gDUoV7PKGIylKHmojy4sec1lb8mq2smXMVuDHP/7xyte/9tprDmgrzDXXXPOG7//6179mnkqEUR20D+mKNihVzB/qw64KaCPLi8Jc5D/84he/yOLNGaQuvfTSWrF5xKXXHfxkufnpT386e/zxx2dnnXXWbPfu3bVeo31In2iDUgaLNuyDeazJYUHayPRQmMvac+ONN258XcdTLutDxPQCOylOYDI02qBUEXHl8K53vWt22mmnjXxF0gWFuaw9sRWI15zEz3vuuScb3KqSP9lSPuecc4a4RBkJYnojvhePJQ/CnQ4cOFD5Wu1D+kAblCrwjvPAa/7oo49mi7l//vOfs71791a+VhuZHiZ/ivwXqhxQZoqSU1RsqYK/e8c73jHAlckUoITmli1bsq3fiOMsQ/uQvtEGpQxCMKOYARXH6qCNTA+Fuawthw4dmt18880bJ5/x/Mc//jH7+nOf+1zpa/FMwObNmxd7kTIahDjddtttG22NEMK7xG5KeDCL0D6kD7RBKQN7wEYi1Ani6zphmdrINDGURdaWs88+OzuY4fDhwxs/w2N+0UUXVYaxPPPMM9lzVS1hBr6f/OQnmeBPDzH6zGc+M/vmN7/Z8RPIImFio80OHjyYfZ8e3FFFXftgMfjwww+/6QCZHTt2VAovWX20QSnjzDPPzNrqV7/61cYOCou2usmfdW2E937qqafedIjRhRde6ImhC0BhLmtLncmtC8Ss33vvvVmlF07qQ4gj1DmpjUMh+LpODKCMQ53DObqAHVBB4d3vfvds586dmQhCJN13332Z1+uVV17xBNo1RxuUMhDFixbGd9xxRxYWgxCPQ4wQ6g899NDsyJEjGz+T/jCURaQFVaelMbmRRBrlF8M7TgwgYhyvBoNdhNHIalFlHyTwsThDEF155ZUbnkkmuIsvvjj7miQukbZog1JFlY2EKGfn5uqrr94Q4NgK4Z54z9ltkX5RmIu0oOq0NDxODFoMXnnbhEyG8Lvf/W5h1yjjUWYf7JQgioCwqfma+TH5EVbgwk3aog1KFWU2glccUY4TKW93+YwzzsieCYGSflGYi7Sg7LQ0BrQ4QbQqXIaSVrJ6lNkHOQcs2tgarortPHHixCIuT9YAbVCqKLOR48ePZ8/kQ5UduBd5CdIfCnORFpCQVbQFGGWqtm/fPuQlyYQos4/YJfnkJz855CXJmqENShVFNsIuSXjCv/SlLw19WWuPwlykZ6LkYlm5qpMnT2bP27ZtG+SaZBqQEBwepqKkujR0wKoY0jfaoFTx61//OnvmlNkib/nf//73jb+RflGYi7SAWsKUqpqHSY8tYiia0Jj0YmKsU2tWlo8i+6A8J5RNZuHNLEvKEqlCG5QqimyEsohQZiPPP/989qyN9I/CXKQFRaelnTp1KnsmYaaIdNIri92T5aXIPki2gjL7iAlPT5R0QRuUKopshNhzOP300wtfG6EuW7duXczFrTEKc5GWlJ2WFlVX8uAwCCCpRlaXNvZBtYw49IPa9yJd0AalijIbicor81DRh11fFnfWue8fhblIQ+KEtapqBkWvJeGGAc2TP1eTLvZBtQwgxMlDO6Qt2qBU0cVGfvnLX2bPlAOW/lGYi/QIceWUSWSbD89TCt/ff//92deXXHLJGJcnIxNVMCJBOIWJ8sknnyysGyzSB9qgVHH22Wdnz7FzknLXXXdl8xulNnUuLQaFuUhDyEYvS3iJ7V+OtA5xztbf97///ezrr3zlK628FLIclNkH7Y4nkl0T7AOwEb5m0YYgYtFm7oF0QRuUKspshBKJ/I58qPCsU7SAk0BZuJF7sHv37iEvd61429gXILJscChQ2amfeBFOO+202eOPPz47ePBg9jO86HgYLrzwQreHV5wq+9i3b1/mdSLXICY9xNCnP/3p2de+9jUFkXRGG5QqymyE9r/yyis3FmuxgEOs41jSU75YFOYiLSib9ICEGB54GQ4fPpz9jK1hJ7z1oMo+Lrvssuz5gQcemD3yyCNZIl78TKQPtEGposxGmKtYwMFtt92WhbUYvjIMhrKINIT4urq1W/GOs+1HWapIqmLbmIFOVpMm9nHeeedt5CSE55Ja+HgzRdqiDUoVTWzkU5/6VPbMwUMRnsmCjhBN6R895iIL5uKLL54dPXo0i82LhCsmQxG8UuysMMGxXXz8+PHs54Q8iQyBNihVUNTgueeey+awW265JdtdQdSbILwYFOYiDTl58uTsnHPOqf33eM2vu+66zBtFzVgTP1ebpvaBKKKmPVvFnMJnDoJ0RRuUKpraCGFOlEc8ceJEljxsWObiUJiLNISDFfJOS6sCr4OsPm3sg0nOiU76QhvMJ+LpL7roorU/GKeNjbBgc9GWz80335w9kzTbtR8pzEXmwLPNdu75559fKKbLTkuT1WaZ7INYYQ4DoTReHKFthaDlZ5lskAT4xx57LNcGh0yIj+s499xz10KUL5ONrAIIcsJ8WPzt3bu303spzEX+SwxkbPHhTeDr+QGty2lpMk1o06effjpr82uuuab078ayDwT2vffeO9u+fXujcnbkNgDXyWeLetWELJDvsH///pX3ki4Dq2yDUZUqzwY524EwvyG47777siokq155xnlsHOgPnGHCjgz3t8sO+SjC/NChQ9nKmWoVZYMQkBlOwkERrLy3bNky+8QnPmEZn55hAKWSCIcM0MGBhA/uddukD96T+t7PPvvs7KWXXtp4X9rxrLPOmu3YsaPSoElS+sMf/pB5YHikr+fEsrZ2gPcgvAvf+973Mhvlf62DdyW48cYbG/09dlBnAIo+Xxe8WnkTaJ9tjy3efffdmUBlLKqKtxzTPj74wQ9mMcBPPPFEVhmBWM+6fZB7GX8bJdBuuummrFIQ4mhZhPm8959KEW08UyGCeY8YfwAb4NG0jjdzFG2ya9euxpPxOtsgYw33v6uIqQP3iHtV53pj3qNN5scYTk2d+nzgPPY67JD88Ic/zNqwaD6Zh7Z/9NFHZ7/97W9bzS/8ntceO3ZsuYR5dJC6xM0McZ7e4BB5bE+xSuGwhAMHDvR/0WsI9/b222/PjJNEDyZBTgpjUGYgxfiaxlKliywEPgP7GWeckb0vbcdAyAOxkDfhYjs8EBQchhGvf+WVV2a/+c1vNl7//PPPb9RfbULqPeDkswcffDDrpOmAxrXyv+X1A0kWNaHStil9t314/1577bXaB2aMaR/0M0QF/xchRx+kj1Z91htuuCH35zgzmozDY8IEi7eT62UsQrxefvnljRcUqQhmssWG3v/+92e/e/HFF7MxiP+B6Lz00ksrvYm0wUMPPbQh7pv2hXW3wWCIcAp0AgufqjaKNqFNuYfYGxVIsIsYY3AMtJlf2oDtcy1NPNurOo81WVywI4NWYb6oS6p5uDeEWqFTaPsXXnih9vzC+MQ977IYGlSYx2okYKulDtu2bdsQdGSMBwwUccoiN4IbSnyPnvPu3HnnnbkrTbYxjxw5snGvm3isQgjk7ZRQPpBtTQYhvFkMSPPxr2SDhzC76qqr3jAx0wFuvfXWDWHf1UPAa/HOcc2pTXFaGgP1VGByZBCqs/tUFwYj2qMoMYj24R7Pi+cqEENs9SGo80Ac8XmYDBfZ9oxDMfnW9fjPM5Z98LmvvvrqjQM/OCK7qdeYz8910x7c664swgYD7i2OF0IQ9uzZ02nrnfcKUZ4XwoOIiTEI+yj6X+lCoS3rboNcL2B/iw6nQGwzX7H4qSLahPaY966HB5bPvEidQX+KUDOuhTm47T1alnksD+43u/XsrkeZ4ao5nX6FduHzIqyZL5iv6hCaJ6/t0/ArHIxl3neuEZ2Lw6itBhn0gCEMA0OLySDdRiyD1V3AVto86YdnRSPdoJ1i0mFbNwXBhMFDCOimUNd7HgZ7RH+A16oIBGGet4wwmAAh1xW2AwFhEIcqrDLRlhdccEHWpxig8h4h6prUYmcRznHfTAxF7xv3OA6zyKOPtsfbFxNeF4//mPbBxBGTTsSL1iWO18YrPOUwlqiggShnMdZFwNE+MUEzzuR9bn4W80uEWMy/B5NyxExT2SPGwqasqw3ydwj6SMIcwvOMMIUqIc2CPvRJXsgLcx9jI7Bj3Be0G7aOc4EQM/on9xS7ZywkfKYLyzSPsYhioUeFE/oZ/R9vNf2sTj8h+ZIQWfomi8eq02/T/xvh1XltH7tFzHssFqrgellMtL3fg3nM+eAYGx8cY2PlUZcQ2wwCVRNJXbEvxbBCBdoq735/9KMf3Wg/BHTdyg5V3rR0Z+TVV1990+9ZpQ6ZuMNAEN5hYg7539F5VxHasWrbORbXTKpNRF1VgheLAu5z0XZzX22PMAiv6fyisylj2gf3nkUKExfhFHXFXXh98B5OOfGL+YLPBjt37uy8gEjnm7LJOkJb8uAaIk457jeLwPDm1WVdbTDNX2FX7vTTT1/0JWZwr+ssoPAiQ5ljgM9IH0L8dQH7Zp4timVm8dhXxaQpz2MIV0LICA+inSL0BPugHVgkNVm4cv92797deLw4depU9lx2T3jPuiGAhLNwzwmharOzMpgwJ9QE8JamHq28kIV5wnC5KVUsW9zUFImJpshI8SpFe7Ka7Yt0Z6TroE14Ux9QUo4BLZKd1h3i9qDve/Hwww9nzyQWd6Ws7eNUwyKvaVPGtA8GfLxgLJTqhG6xqKL96sYzj0mML00n5iLSEEhiuotIx6C82Oc+QnXW1QZj0Y8oHSovLGK083ba52HBVTeZtUnscsD9+dOf/rQRogIIUJwceMUXuVCe0jxGm3AdEbcNUT6TBGN2Ytv2C7zkU4C2pCJW2wiOQYQ5K8yIV0aEp8Kcr8uEOSuqEOashvLA4AMaVtpTZ0sy7TRlk1xTwoibhkkETz31VPbM4ox40T7ANrFbPPmIRz7vUJ6eqZGGovVZ/zq85bRbW8FYp+35P+HtaHLiXRlj2weTGfeuKp4xYrXrJDWODdcaY36Z97IJtBOOhkjiY17Jm/wjRIG/XcR9WmcbDLivPKgYsui8sNAaZTshTYjQhDre5rQCGSI0cmR4bVcB2pSxbSQqKmH70be5D0MsSuoQi/CqvEd+jz6pA5+vbQTHwoU5xomXBoOMbbsmCUesqIOizsWAAG0F3dRpWsIuj7rlglLKPI+s9NMDI7oS4gyIRW46YBH7GdvDl1xySa8DHnbLCj+uryh5cdUJbznelz4Jb3lbT07dto/YQP6uz4lgTPtgguf/lu1cLZMohwil67vqD3Z7zz33ZJMl1ReYK0JIhhc3tvip+rII1tUG8yD5kLaIEJJF8Nxzz2XPfSQ5Q+RnVC2qiJFOBShjGyEqY/a/MWwkxp50UUK/YwdjSvkttAu7dMwjRVEcOC3THMkq+LxNQrZTFi7MSXKhURgAoyHSBqESQxmpdz1vkI5Me6Diw5QaexlJ26PMy1A3qaIuVDkAOm7dBUTE6bF4o8PgXcPz0rcNRCxl0yS7VSISo2ifPr3lLNwZvJouqtu0fezI1AmJa8KY9hGTK2Ms92R+4g/Byfib/i6qFzTpb0ORhtJFJS/auuvJpXx+RCRzBvGfTMQRMhO0cWA0Yd1sMCr25IVPxW7rEJ7brnMC4194fNEhVTsD4XlFnPFgvhw7zHYMG6GNI+yHhRgPqn1NUaeRMMrCnapzaMnY0YjQGxxTOCTrhjt1qXqzUGEeSS4MsEWGnJfklxKDMTdk/r0joSHKsE09brItVQl5fVLVHouALGzamTau66ma30WIQe8f//jHQjo9nTFE4KIPw5giUdkgMvz7gmQkaLJL0rbtY1txERPkWPYRyWgQHroUhCcTY54IhSkkgKWkooHPQ5UFRDgeSmwvzlKIcnJNdwFoI7zWzBnYHAnnwPvxc7b6+b9tEsjqsI42CCwOEfBRfYnFFn+L/U113p4/FA07/O53v1trMXj99ddntozHPsq4ElMfXmMKKIzhNR7aRvh/9DP6FotSBC59LMqrsosw9k5CwDXQPuzg0laRfB6waG96+FhbFibM6XxkakNeeTxuQJ34m+gYdOL5CTkqONDwfXrx5HU4vGXRhPcKUd7kwKJ01RqTNO/DY1FerzisYWjqhDLRT8r+rss9YYLh/fsOLWCMiLKYTcJY2rZ9eLEWVb93LPsI5stE0m5FQilIkyLLGMoG0zEHb1ue8MaThWBnwVFWb3yeKL+IKJ9/X+waby8JW9gTO72LSCRbNxtk2592xzYQYyHgGe/z6kVPCRLR0Ri0Gf0Iu8A+uMd1YumjDCyk1Ue4F4xbtBP3gf+xdevWwYT60DaCNkv1Wex28mCM4oGnmhzCqEozhlCnjVhARr4Tu1pxwBBVeGKuGmKHcWHCHE9YlFXLE80RX1YWo5x6T9hmWLcjZccgnajr1ALv4vmJibKpKIdUIIYXJk71Y0XO5+jbXni/dbTBqCLRdzY/YwTiqmkyadu2X3Qp1anZRyoMloV0zEFA5E3QceYBCzHaNC+EZ56YdIHX5v09PyNZLxZ7dd63Ketmg7TV1EKl6jLvySek4cc//nEmatlZbuLp5z6kbZNWJgmnwlBCfWwbieTfIK1Ww2MsoR6nfhZVrYqTy1moLbr+/kKEOUbHB0gTPtsQiRtQp9yRdKfotMd5oo5rW89P1CnGe9VUlOfB69l+PnjwYPY9E2zR4NNHMm3flIUrlf1ukacuxvvHgUJ9bjmn3vKuCdtN2r4Oy2YfY///Pm0wTTgvG4tYzMWBQVW7AoC3MmJdET1FpGc04NEba4tdG5we4fmlmgxzV1mtcQ5RIp+h6G/mvchx2idj7bxQT5OUU5bBRnC+kdxLyFiRkyD9bOlpn1FOMRXqiyqHGJWguMaieY4FJn9DOy1i0Z6yEGEeiXx4PKoEV1m5vRhw6xwstMoMWZUl9ZiXlQ5KDwJoCkZNR4st5b7alveJkmhlk/W6TzBNCG854WJ9Et7yvsrS1Wl77K1O/WHtYzzalLWrU9Uj9cSXCf70d4vIt9EGx6GoPGYbENs4HhGQRcIc8RZx5eEFL6vJPx/2gnOBmGzGs6Kd62WwEfom94rH/fffX3mAUl7YC1X3oszpoogyqVVllintyHVwTVXzVpdS0r0L8zjOvSzhE+oIqCi/NLUEpVWGThHx/0VtQ2cJyrxPeTDoREIa8YV5xh2HQnQRbHVrjUox4S2HricUpqTe8r5qOacUtX2c2lZVq3ZZqRsvPmXSz8COaZGQSWPR64j5tPJHeohQ3df0hTY4LHE9iOS+nXtlC8Jrr712Q1wj5JhL8YKHOOVRlBvHdaZe27bHuk8BnIGIWYRshKrwSBcsaIgirZiGvQxxH6pspG5EAdDmbRyX0KswT+P48hI+m4D4C8/Cuh8aNPTKODwCGFZeTc+oG4+AbxoykG4ZFU26seMyL8wjS37Pnj2Foj1CbIoOo5L6xKE9eHr6nNSoyBB1bevaTx9tH/kQi47zHZI0D6ftJDAlGGvijIQypw1JdMAirE5dYca0qLJQdhpfWneY1/SNNjgsUXWnqiwzEKIC1113Xa33LluEzIvrNOExjaXGHqj2UhZTvuzRAvPiOk2CTcN2uA9lMeVD3Ieqk+jrLuqB+YjP1IZehTmiiwm3KOGziLybEYdMwNAHutx6662ZR6NN7DOxlhjeVVddtfHaWOmVvVefW21diYMIaEuSXdK2Sb2deds+kSAB8+EzUeKSwQgvV149VbxkdNiyyZZyRnkdl3sfi7kdO3bU/LSSB30ytg7rHihU1vYpcWhYm2TSLm1P/4o4zlUhJoq+D6wZkwsuuCBrzxAv8wt4RE7Y5nyZzSIbZAyj1n2U2M2LEY34VuBv68xh6XZ1nbhTbXBYYge4zuFH5EvRLnk2lxI2EqK/DnXF6dRKCPbNfBJs0YKFaktDlpWM6iuUYi3r9xHyUrUzFI7ltk7l3oR5iC6ImKK6EEOV3gwGyPTEz7ItzUVAJ257WBGvZZWUvpbPUlWeqCgTeAyi88RJWCxUEDtsH7M9F5U0mnrLI14Zb1GUzSqiLKmUDoQHlXJWLNq4Lga5tKb9slWjmBpxGie23GcpUhbvtH/bZNIubY+Ii8XgopN3hiK8v6u0Q0T7IfbwcLP1T9vGQj3qjccY1KTiB/YWpxWT40Jt/nhfPKpMyvG+e/fuLX2vEPEh0oDx8tSpU6U7TNrg8CDwsJsq5xdhddgGNgfz4wivZ96K0x/bjotlFVqYb2NxEOKUReKqzmdlFVoiTj8WLIs8DI15I84xIAE9r4wni/44b6VK+8S5H2133XoT5rHt3YbNmzdvfI2RHj58+A2/52ZxQxZRdWKeWOm0qRRBx8WgOIQgBUOjI+eV2IlEyKmI8gDDwwAR4rGSBYRaUZZ4GXzOrl4iDh+KuD0m2PQAAK6VAYwOZk377sSWft87D+FxaJpM2kfb87vIbWHgXAVRFP2SOM5VgvGQhRfzChNmOH1i67+NWEEQMYewOMRD1+Z9U4/8PNhl6nDIC0HUBoeHNmU8Y/wom2eZ04gbjypDx44dy8aW8KQTmoA2aHL6Yx3KKrTwzP9fVWE+T1mFFu5HmTCPA51SQnPwTN8NyB9JbYH7v2vXrmxRxvvgTI065vRr2p4FGeMEpburiIM122qRt/z7P7R65YpCmSM6X5uyPAz4NOiBAwfe8HNi14oOJeDUS7ZDF10XU1aTRZdLXDXifuFd379//2TCx9oQ5wAwWdSNi10E2mAztMHhYQ7etGnTm+bmPGL3HzEXuQC0FUKNnbohnWiIU9DZNKsMMSpbNM9TNFZxv8mTnC9MEiFGdSoN4vXHy98lCmJhBwwtK6x08Ly1gZUdHTcFTzGdu+hIbKizApPxYWAgHCe2syIHgQGBlX1scQ65yFrGQ2TGhHuFF5Z+TsnGvrZG2S3j/SI3IwZl+j8DfXgV6x7pXef/EXoBO3fu7Px+XdAGm6ENDg/5LCwgqsQdTMme+xbkQ9tIn1S1Cf2oa1+a371oAzthLFS7LODe+r//odNVLCF0TsJL5h8///nPM8NkS+4vf/nLm36PZzvNOsfI3/nOd258jfeAxuBv4ndUGOF7Vupf//rX3/B461vfmv2fK664YqxbITXBZtjaZAuT+sZsmZEAQiz2Rz7ykdnnP//5zH5IVKlTJULGA89HhMUwgH7oQx/q/J6E38VBR0xwjBWU1mKQxmbIo+Fn3/nOd3r4BLPZD37wg+w92ab/1re+1ct7ynBog8MSB1JRUezLX/7y2JczGkPbyLqBBmTRQ1hMlz69dqEsrAyPHj3a6rXzWxNsR+ZVFgFWdxj6TTfdVHgELmEzbK9VJRrJNIjkodgyY3uLiiWrECe6bkRuB7BD1nV7Ok0s40CwiFnuu2/zf+6+++7MgTD07oz0izY4LHG/yW9ZVBLh1BnKRtYR7u0tt9yS3c+ufWLtQlkwxKK64IjoogEyr7g98UaRBELlErLS06SQKB9pGMtqEANaJJSsakmrdYB2o5QVAoMtbpJSzz///NZb2GEb6UK9z1hUxh/qv0foQCz8ZXnRBoeF+00SIfe67Ij4VWbRNrLO3HnnnVmibh99Yu2EeVH8EAH7ZdVYygr/RzWWb3zjG2/4PQav0a8eCHOSgZZpUpI3Q/8lyTuSvcgf6DpZR1WAvmvvEvJAYjnePs4ZWOaEQfl/tMFhcU5+nUXZyDrTZ+L72gnzIqiFPF9/vC7EChJHHqK/6vSolDqHD8l0CE/DVGv2SnP6TPZKd1P6ZL7er6wW2qAMyaJsRPpBYf5f+qrGkleHvYprr7221f+V4QlPw9SOnpZpEBOeAkbGQhuUKrSRaaMwn70exgJdDhWKMBY85cSwp0kWfH3w4MHZnj177AhLTtQ2bXIcs6wHJJcBScEiY6ANShXayPRRmM/6CWN5z3vekyV7clodZfSOHDmS1U4lDjn+RlG+/JA8BJZElHnYOQN3U2QstEGpQhuZPgrz2ethLE2PmAfCVsikp+4nHvE4dIbs3LRCCx0BTyvliQJqv1qiaLnA0xBHMpsTIPPEom3r1q0jX4msK9qgVKGNTJ+1q2M+D2EsPK6//vpaf8SR6wkAAAGuSURBVI84oxh/HNmKp50ECsJgEGt33HFHll1P3DjfRxjLFE/SEhEREZHpsNIec0TxM888U/o3nAS2ZcuWwoOCYPPmzRthKKdOnco87ISphBgPCGWJUnqUlcILP1+xRUREREQkj5UW5ohiDhOoA6d4FkE8cQjzorJWnOKJB51QFgQ6XngEeVqxRURERESkiJUOZUkro3ShrC45nvZjx47NNm3aNLv88ss3wlduv/32jQoeCHtOhEohQbRNXLuIiIiIrCYrLcwXDQI8PO379u170+/xmp84cWKjZujJkydnL7/8chbqsn//fhMIRURERGQDhbmIiIiIyAT4n7EvQEREREREFOYiIiIiIpNAYS4iIiIiMgEU5iIiIiIiE0BhLiIiIiIyARTmIiIiIiITQGEuIiIiIjIBFOYiIiIiIhNAYS4iIiIiMgEU5iIiIiIiE0BhLiIiIiIyARTmIiIiIiITQGEuIiIiIjIBFOYiIiIiIhNAYS4iIiIiMgEU5iIiIiIiE0BhLiIiIiIyARTmIiIiIiITQGEuIiIiIjIBFOYiIiIiIhNAYS4iIiIiMgH+D7AODApG94LPAAAAAElFTkSuQmCC"
fomula = base64.b64decode(fomula_png)
fh = open("Tempfomula.png", "wb")
fh.write(fomula)
fh.close()
print("成功转换文件")

使用Tkinter编写一个简单的小程序进行测试,同时展示如何在退出的时候删除图片:

import tkinter
import os

root = tkinter.Tk()
root.geometry("610x320+100+100")
root.title("测试")
img_LOGO = tkinter.PhotoImage(file="Tempfomula.png")
label_LOGO = tkinter.Label(root, image=img_LOGO)
label_LOGO.pack()

# 退出时检测是否存在TempLogo.png文件,如果有就删除,之后退出程序
def on_exit():
  if os.path.exists("Tempfomula.png"):
    os.remove("Tempfomula.png")
  root.quit()
root.protocol("WM_DELETE_WINDOW",on_exit)

root.mainloop()

完整代码:

import base64
import tkinter
import os

def pictopy(picture_names, py_name):
    write_data = []
    for picture_name in picture_names:
        filename = picture_name.replace('.', '_')
        open_pic = open("%s" % picture_name, 'rb')
        b64str = base64.b64encode(open_pic.read())
        open_pic.close()
        write_data.append('%s = "%s"\n' % (filename, b64str.decode()))

    f = open('%s.py' % py_name, 'w+')
    for data in write_data:
        f.write(data)
    f.close()

if __name__ == '__main__':
    pics = ["fomula.png"] # fomula.png是图片名
    pictopy(pics, 'fomula') # fomula是被写入的文件名
    print("写入程序成功!")

import base64

fomula_png = "iVBORw0KGgoAAAANSUhEUgAAAuYAAABrCAYAAAA7KEd8AAAgAElEQVR4nO2dTcxdVdXHr69arIrEihFrxY9qomKJBD+ColVihWhCQxrSEFITmJQB6YgRE14mjByRDsoEkxJSCWkImBgIBINCGjANCH6QqGiQCErFqCUFHPj6O7ied3M53+fcc8699/dLbu7zde9z7tlr7/3fa6+19lv+/R9mIiIiIiIyKv8z9gWIiIiIiIjCXERERERkEijMRUREREQmgMJcRERERGQCKMxFRERERCaAwlxEREREZAIozEVEREREJoDCXERERERkAijMRUREREQmgMJcRERERGQCKMxFRERERCaAwlxEREREZAIozEVEREREJsDbxr4AkWXm0KFDsz//+c+d3+eGG27o4WpkamgfMjbaoFShjUwLhblIR84999zZZZddNvZlyETRPmRstEGpQhuZDoayiHQAL8O2bdvGvgyZKNqHjI02KFVoI9NCYS4iIiIiMgEU5iIt+f3vf589n3nmmSNfiUwR7UPGRhuUKrSR6aEwF2nJiRMnsuePfexjI1+JTBHtQ8ZGG5QqtJHpYfKnrC14Ch577LEsvu5vf/tb9rP3vve9s/POO2/21a9+deSrk7H52c9+Nnv66acz+3j55Zezn334wx+effGLX5x99rOfHfnqZB3QBqWKBx54YPbss8/OXnjhhdm//vWv2dvf/vbMRr797W/P3ve+9419edIChbmsLU888UQ26X3hC1/IBjGE+tGjR2cPPvhglghT5UF48cUXMyEvq8nx48dnL7300mzXrl2ZjSCSfvSjH2U/qyOKtA/pijYoVTzyyCNZG19xxRXZnHXXXXfNnnzyycxO9u3bV/l6bWR6GMoiaw0DEqIcGNS2b9+efR3be2W8+uqrs02bNi30+mRcsAcEEfD8gQ98YMNzWYX2IX2gDUoV7PKGIylKHmojy4sec1lb8mq2smXMVuDHP/7xyte/9tprDmgrzDXXXPOG7//6179mnkqEUR20D+mKNihVzB/qw64KaCPLi8Jc5D/84he/yOLNGaQuvfTSWrF5xKXXHfxkufnpT386e/zxx2dnnXXWbPfu3bVeo31In2iDUgaLNuyDeazJYUHayPRQmMvac+ONN258XcdTLutDxPQCOylOYDI02qBUEXHl8K53vWt22mmnjXxF0gWFuaw9sRWI15zEz3vuuScb3KqSP9lSPuecc4a4RBkJYnojvhePJQ/CnQ4cOFD5Wu1D+kAblCrwjvPAa/7oo49mi7l//vOfs71791a+VhuZHiZ/ivwXqhxQZoqSU1RsqYK/e8c73jHAlckUoITmli1bsq3fiOMsQ/uQvtEGpQxCMKOYARXH6qCNTA+Fuawthw4dmt18880bJ5/x/Mc//jH7+nOf+1zpa/FMwObNmxd7kTIahDjddtttG22NEMK7xG5KeDCL0D6kD7RBKQN7wEYi1Ani6zphmdrINDGURdaWs88+OzuY4fDhwxs/w2N+0UUXVYaxPPPMM9lzVS1hBr6f/OQnmeBPDzH6zGc+M/vmN7/Z8RPIImFio80OHjyYfZ8e3FFFXftgMfjwww+/6QCZHTt2VAovWX20QSnjzDPPzNrqV7/61cYOCou2usmfdW2E937qqafedIjRhRde6ImhC0BhLmtLncmtC8Ss33vvvVmlF07qQ4gj1DmpjUMh+LpODKCMQ53DObqAHVBB4d3vfvds586dmQhCJN13332Z1+uVV17xBNo1RxuUMhDFixbGd9xxRxYWgxCPQ4wQ6g899NDsyJEjGz+T/jCURaQFVaelMbmRRBrlF8M7TgwgYhyvBoNdhNHIalFlHyTwsThDEF155ZUbnkkmuIsvvjj7miQukbZog1JFlY2EKGfn5uqrr94Q4NgK4Z54z9ltkX5RmIu0oOq0NDxODFoMXnnbhEyG8Lvf/W5h1yjjUWYf7JQgioCwqfma+TH5EVbgwk3aog1KFWU2glccUY4TKW93+YwzzsieCYGSflGYi7Sg7LQ0BrQ4QbQqXIaSVrJ6lNkHOQcs2tgarortPHHixCIuT9YAbVCqKLOR48ePZ8/kQ5UduBd5CdIfCnORFpCQVbQFGGWqtm/fPuQlyYQos4/YJfnkJz855CXJmqENShVFNsIuSXjCv/SlLw19WWuPwlykZ6LkYlm5qpMnT2bP27ZtG+SaZBqQEBwepqKkujR0wKoY0jfaoFTx61//OnvmlNkib/nf//73jb+RflGYi7SAWsKUqpqHSY8tYiia0Jj0YmKsU2tWlo8i+6A8J5RNZuHNLEvKEqlCG5QqimyEsohQZiPPP/989qyN9I/CXKQFRaelnTp1KnsmYaaIdNIri92T5aXIPki2gjL7iAlPT5R0QRuUKopshNhzOP300wtfG6EuW7duXczFrTEKc5GWlJ2WFlVX8uAwCCCpRlaXNvZBtYw49IPa9yJd0AalijIbicor81DRh11fFnfWue8fhblIQ+KEtapqBkWvJeGGAc2TP1eTLvZBtQwgxMlDO6Qt2qBU0cVGfvnLX2bPlAOW/lGYi/QIceWUSWSbD89TCt/ff//92deXXHLJGJcnIxNVMCJBOIWJ8sknnyysGyzSB9qgVHH22Wdnz7FzknLXXXdl8xulNnUuLQaFuUhDyEYvS3iJ7V+OtA5xztbf97///ezrr3zlK628FLIclNkH7Y4nkl0T7AOwEb5m0YYgYtFm7oF0QRuUKspshBKJ/I58qPCsU7SAk0BZuJF7sHv37iEvd61429gXILJscChQ2amfeBFOO+202eOPPz47ePBg9jO86HgYLrzwQreHV5wq+9i3b1/mdSLXICY9xNCnP/3p2de+9jUFkXRGG5QqymyE9r/yyis3FmuxgEOs41jSU75YFOYiLSib9ICEGB54GQ4fPpz9jK1hJ7z1oMo+Lrvssuz5gQcemD3yyCNZIl78TKQPtEGposxGmKtYwMFtt92WhbUYvjIMhrKINIT4urq1W/GOs+1HWapIqmLbmIFOVpMm9nHeeedt5CSE55Ja+HgzRdqiDUoVTWzkU5/6VPbMwUMRnsmCjhBN6R895iIL5uKLL54dPXo0i82LhCsmQxG8UuysMMGxXXz8+PHs54Q8iQyBNihVUNTgueeey+awW265JdtdQdSbILwYFOYiDTl58uTsnHPOqf33eM2vu+66zBtFzVgTP1ebpvaBKKKmPVvFnMJnDoJ0RRuUKpraCGFOlEc8ceJEljxsWObiUJiLNISDFfJOS6sCr4OsPm3sg0nOiU76QhvMJ+LpL7roorU/GKeNjbBgc9GWz80335w9kzTbtR8pzEXmwLPNdu75559fKKbLTkuT1WaZ7INYYQ4DoTReHKFthaDlZ5lskAT4xx57LNcGh0yIj+s499xz10KUL5ONrAIIcsJ8WPzt3bu303spzEX+SwxkbPHhTeDr+QGty2lpMk1o06effjpr82uuuab078ayDwT2vffeO9u+fXujcnbkNgDXyWeLetWELJDvsH///pX3ki4Dq2yDUZUqzwY524EwvyG47777siokq155xnlsHOgPnGHCjgz3t8sO+SjC/NChQ9nKmWoVZYMQkBlOwkERrLy3bNky+8QnPmEZn55hAKWSCIcM0MGBhA/uddukD96T+t7PPvvs7KWXXtp4X9rxrLPOmu3YsaPSoElS+sMf/pB5YHikr+fEsrZ2gPcgvAvf+973Mhvlf62DdyW48cYbG/09dlBnAIo+Xxe8WnkTaJ9tjy3efffdmUBlLKqKtxzTPj74wQ9mMcBPPPFEVhmBWM+6fZB7GX8bJdBuuummrFIQ4mhZhPm8959KEW08UyGCeY8YfwAb4NG0jjdzFG2ya9euxpPxOtsgYw33v6uIqQP3iHtV53pj3qNN5scYTk2d+nzgPPY67JD88Ic/zNqwaD6Zh7Z/9NFHZ7/97W9bzS/8ntceO3ZsuYR5dJC6xM0McZ7e4BB5bE+xSuGwhAMHDvR/0WsI9/b222/PjJNEDyZBTgpjUGYgxfiaxlKliywEPgP7GWeckb0vbcdAyAOxkDfhYjs8EBQchhGvf+WVV2a/+c1vNl7//PPPb9RfbULqPeDkswcffDDrpOmAxrXyv+X1A0kWNaHStil9t314/1577bXaB2aMaR/0M0QF/xchRx+kj1Z91htuuCH35zgzmozDY8IEi7eT62UsQrxefvnljRcUqQhmssWG3v/+92e/e/HFF7MxiP+B6Lz00ksrvYm0wUMPPbQh7pv2hXW3wWCIcAp0AgufqjaKNqFNuYfYGxVIsIsYY3AMtJlf2oDtcy1NPNurOo81WVywI4NWYb6oS6p5uDeEWqFTaPsXXnih9vzC+MQ977IYGlSYx2okYKulDtu2bdsQdGSMBwwUccoiN4IbSnyPnvPu3HnnnbkrTbYxjxw5snGvm3isQgjk7ZRQPpBtTQYhvFkMSPPxr2SDhzC76qqr3jAx0wFuvfXWDWHf1UPAa/HOcc2pTXFaGgP1VGByZBCqs/tUFwYj2qMoMYj24R7Pi+cqEENs9SGo80Ac8XmYDBfZ9oxDMfnW9fjPM5Z98LmvvvrqjQM/OCK7qdeYz8910x7c664swgYD7i2OF0IQ9uzZ02nrnfcKUZ4XwoOIiTEI+yj6X+lCoS3rboNcL2B/iw6nQGwzX7H4qSLahPaY966HB5bPvEidQX+KUDOuhTm47T1alnksD+43u/XsrkeZ4ao5nX6FduHzIqyZL5iv6hCaJ6/t0/ArHIxl3neuEZ2Lw6itBhn0gCEMA0OLySDdRiyD1V3AVto86YdnRSPdoJ1i0mFbNwXBhMFDCOimUNd7HgZ7RH+A16oIBGGet4wwmAAh1xW2AwFhEIcqrDLRlhdccEHWpxig8h4h6prUYmcRznHfTAxF7xv3OA6zyKOPtsfbFxNeF4//mPbBxBGTTsSL1iWO18YrPOUwlqiggShnMdZFwNE+MUEzzuR9bn4W80uEWMy/B5NyxExT2SPGwqasqw3ydwj6SMIcwvOMMIUqIc2CPvRJXsgLcx9jI7Bj3Be0G7aOc4EQM/on9xS7ZywkfKYLyzSPsYhioUeFE/oZ/R9vNf2sTj8h+ZIQWfomi8eq02/T/xvh1XltH7tFzHssFqrgellMtL3fg3nM+eAYGx8cY2PlUZcQ2wwCVRNJXbEvxbBCBdoq735/9KMf3Wg/BHTdyg5V3rR0Z+TVV1990+9ZpQ6ZuMNAEN5hYg7539F5VxHasWrbORbXTKpNRF1VgheLAu5z0XZzX22PMAiv6fyisylj2gf3nkUKExfhFHXFXXh98B5OOfGL+YLPBjt37uy8gEjnm7LJOkJb8uAaIk457jeLwPDm1WVdbTDNX2FX7vTTT1/0JWZwr+ssoPAiQ5ljgM9IH0L8dQH7Zp4timVm8dhXxaQpz2MIV0LICA+inSL0BPugHVgkNVm4cv92797deLw4depU9lx2T3jPuiGAhLNwzwmharOzMpgwJ9QE8JamHq28kIV5wnC5KVUsW9zUFImJpshI8SpFe7Ka7Yt0Z6TroE14Ux9QUo4BLZKd1h3i9qDve/Hwww9nzyQWd6Ws7eNUwyKvaVPGtA8GfLxgLJTqhG6xqKL96sYzj0mML00n5iLSEEhiuotIx6C82Oc+QnXW1QZj0Y8oHSovLGK083ba52HBVTeZtUnscsD9+dOf/rQRogIIUJwceMUXuVCe0jxGm3AdEbcNUT6TBGN2Ytv2C7zkU4C2pCJW2wiOQYQ5K8yIV0aEp8Kcr8uEOSuqEOashvLA4AMaVtpTZ0sy7TRlk1xTwoibhkkETz31VPbM4ox40T7ANrFbPPmIRz7vUJ6eqZGGovVZ/zq85bRbW8FYp+35P+HtaHLiXRlj2weTGfeuKp4xYrXrJDWODdcaY36Z97IJtBOOhkjiY17Jm/wjRIG/XcR9WmcbDLivPKgYsui8sNAaZTshTYjQhDre5rQCGSI0cmR4bVcB2pSxbSQqKmH70be5D0MsSuoQi/CqvEd+jz6pA5+vbQTHwoU5xomXBoOMbbsmCUesqIOizsWAAG0F3dRpWsIuj7rlglLKPI+s9NMDI7oS4gyIRW46YBH7GdvDl1xySa8DHnbLCj+uryh5cdUJbznelz4Jb3lbT07dto/YQP6uz4lgTPtgguf/lu1cLZMohwil67vqD3Z7zz33ZJMl1ReYK0JIhhc3tvip+rII1tUG8yD5kLaIEJJF8Nxzz2XPfSQ5Q+RnVC2qiJFOBShjGyEqY/a/MWwkxp50UUK/YwdjSvkttAu7dMwjRVEcOC3THMkq+LxNQrZTFi7MSXKhURgAoyHSBqESQxmpdz1vkI5Me6Diw5QaexlJ26PMy1A3qaIuVDkAOm7dBUTE6bF4o8PgXcPz0rcNRCxl0yS7VSISo2ifPr3lLNwZvJouqtu0fezI1AmJa8KY9hGTK2Ms92R+4g/Byfib/i6qFzTpb0ORhtJFJS/auuvJpXx+RCRzBvGfTMQRMhO0cWA0Yd1sMCr25IVPxW7rEJ7brnMC4194fNEhVTsD4XlFnPFgvhw7zHYMG6GNI+yHhRgPqn1NUaeRMMrCnapzaMnY0YjQGxxTOCTrhjt1qXqzUGEeSS4MsEWGnJfklxKDMTdk/r0joSHKsE09brItVQl5fVLVHouALGzamTau66ma30WIQe8f//jHQjo9nTFE4KIPw5giUdkgMvz7gmQkaLJL0rbtY1txERPkWPYRyWgQHroUhCcTY54IhSkkgKWkooHPQ5UFRDgeSmwvzlKIcnJNdwFoI7zWzBnYHAnnwPvxc7b6+b9tEsjqsI42CCwOEfBRfYnFFn+L/U113p4/FA07/O53v1trMXj99ddntozHPsq4ElMfXmMKKIzhNR7aRvh/9DP6FotSBC59LMqrsosw9k5CwDXQPuzg0laRfB6waG96+FhbFibM6XxkakNeeTxuQJ34m+gYdOL5CTkqONDwfXrx5HU4vGXRhPcKUd7kwKJ01RqTNO/DY1FerzisYWjqhDLRT8r+rss9YYLh/fsOLWCMiLKYTcJY2rZ9eLEWVb93LPsI5stE0m5FQilIkyLLGMoG0zEHb1ue8MaThWBnwVFWb3yeKL+IKJ9/X+waby8JW9gTO72LSCRbNxtk2592xzYQYyHgGe/z6kVPCRLR0Ri0Gf0Iu8A+uMd1YumjDCyk1Ue4F4xbtBP3gf+xdevWwYT60DaCNkv1Wex28mCM4oGnmhzCqEozhlCnjVhARr4Tu1pxwBBVeGKuGmKHcWHCHE9YlFXLE80RX1YWo5x6T9hmWLcjZccgnajr1ALv4vmJibKpKIdUIIYXJk71Y0XO5+jbXni/dbTBqCLRdzY/YwTiqmkyadu2X3Qp1anZRyoMloV0zEFA5E3QceYBCzHaNC+EZ56YdIHX5v09PyNZLxZ7dd63Ketmg7TV1EKl6jLvySek4cc//nEmatlZbuLp5z6kbZNWJgmnwlBCfWwbieTfIK1Ww2MsoR6nfhZVrYqTy1moLbr+/kKEOUbHB0gTPtsQiRtQp9yRdKfotMd5oo5rW89P1CnGe9VUlOfB69l+PnjwYPY9E2zR4NNHMm3flIUrlf1ukacuxvvHgUJ9bjmn3vKuCdtN2r4Oy2YfY///Pm0wTTgvG4tYzMWBQVW7AoC3MmJdET1FpGc04NEba4tdG5we4fmlmgxzV1mtcQ5RIp+h6G/mvchx2idj7bxQT5OUU5bBRnC+kdxLyFiRkyD9bOlpn1FOMRXqiyqHGJWguMaieY4FJn9DOy1i0Z6yEGEeiXx4PKoEV1m5vRhw6xwstMoMWZUl9ZiXlQ5KDwJoCkZNR4st5b7alveJkmhlk/W6TzBNCG854WJ9Et7yvsrS1Wl77K1O/WHtYzzalLWrU9Uj9cSXCf70d4vIt9EGx6GoPGYbENs4HhGQRcIc8RZx5eEFL6vJPx/2gnOBmGzGs6Kd62WwEfom94rH/fffX3mAUl7YC1X3oszpoogyqVVllintyHVwTVXzVpdS0r0L8zjOvSzhE+oIqCi/NLUEpVWGThHx/0VtQ2cJyrxPeTDoREIa8YV5xh2HQnQRbHVrjUox4S2HricUpqTe8r5qOacUtX2c2lZVq3ZZqRsvPmXSz8COaZGQSWPR64j5tPJHeohQ3df0hTY4LHE9iOS+nXtlC8Jrr712Q1wj5JhL8YKHOOVRlBvHdaZe27bHuk8BnIGIWYRshKrwSBcsaIgirZiGvQxxH6pspG5EAdDmbRyX0KswT+P48hI+m4D4C8/Cuh8aNPTKODwCGFZeTc+oG4+AbxoykG4ZFU26seMyL8wjS37Pnj2Foj1CbIoOo5L6xKE9eHr6nNSoyBB1bevaTx9tH/kQi47zHZI0D6ftJDAlGGvijIQypw1JdMAirE5dYca0qLJQdhpfWneY1/SNNjgsUXWnqiwzEKIC1113Xa33LluEzIvrNOExjaXGHqj2UhZTvuzRAvPiOk2CTcN2uA9lMeVD3Ieqk+jrLuqB+YjP1IZehTmiiwm3KOGziLybEYdMwNAHutx6662ZR6NN7DOxlhjeVVddtfHaWOmVvVefW21diYMIaEuSXdK2Sb2deds+kSAB8+EzUeKSwQgvV149VbxkdNiyyZZyRnkdl3sfi7kdO3bU/LSSB30ytg7rHihU1vYpcWhYm2TSLm1P/4o4zlUhJoq+D6wZkwsuuCBrzxAv8wt4RE7Y5nyZzSIbZAyj1n2U2M2LEY34VuBv68xh6XZ1nbhTbXBYYge4zuFH5EvRLnk2lxI2EqK/DnXF6dRKCPbNfBJs0YKFaktDlpWM6iuUYi3r9xHyUrUzFI7ltk7l3oR5iC6ImKK6EEOV3gwGyPTEz7ItzUVAJ257WBGvZZWUvpbPUlWeqCgTeAyi88RJWCxUEDtsH7M9F5U0mnrLI14Zb1GUzSqiLKmUDoQHlXJWLNq4Lga5tKb9slWjmBpxGie23GcpUhbvtH/bZNIubY+Ii8XgopN3hiK8v6u0Q0T7IfbwcLP1T9vGQj3qjccY1KTiB/YWpxWT40Jt/nhfPKpMyvG+e/fuLX2vEPEh0oDx8tSpU6U7TNrg8CDwsJsq5xdhddgGNgfz4wivZ96K0x/bjotlFVqYb2NxEOKUReKqzmdlFVoiTj8WLIs8DI15I84xIAE9r4wni/44b6VK+8S5H2133XoT5rHt3YbNmzdvfI2RHj58+A2/52ZxQxZRdWKeWOm0qRRBx8WgOIQgBUOjI+eV2IlEyKmI8gDDwwAR4rGSBYRaUZZ4GXzOrl4iDh+KuD0m2PQAAK6VAYwOZk377sSWft87D+FxaJpM2kfb87vIbWHgXAVRFP2SOM5VgvGQhRfzChNmOH1i67+NWEEQMYewOMRD1+Z9U4/8PNhl6nDIC0HUBoeHNmU8Y/wom2eZ04gbjypDx44dy8aW8KQTmoA2aHL6Yx3KKrTwzP9fVWE+T1mFFu5HmTCPA51SQnPwTN8NyB9JbYH7v2vXrmxRxvvgTI065vRr2p4FGeMEpburiIM122qRt/z7P7R65YpCmSM6X5uyPAz4NOiBAwfe8HNi14oOJeDUS7ZDF10XU1aTRZdLXDXifuFd379//2TCx9oQ5wAwWdSNi10E2mAztMHhYQ7etGnTm+bmPGL3HzEXuQC0FUKNnbohnWiIU9DZNKsMMSpbNM9TNFZxv8mTnC9MEiFGdSoN4vXHy98lCmJhBwwtK6x08Ly1gZUdHTcFTzGdu+hIbKizApPxYWAgHCe2syIHgQGBlX1scQ65yFrGQ2TGhHuFF5Z+TsnGvrZG2S3j/SI3IwZl+j8DfXgV6x7pXef/EXoBO3fu7Px+XdAGm6ENDg/5LCwgqsQdTMme+xbkQ9tIn1S1Cf2oa1+a371oAzthLFS7LODe+r//odNVLCF0TsJL5h8///nPM8NkS+4vf/nLm36PZzvNOsfI3/nOd258jfeAxuBv4ndUGOF7Vupf//rX3/B461vfmv2fK664YqxbITXBZtjaZAuT+sZsmZEAQiz2Rz7ykdnnP//5zH5IVKlTJULGA89HhMUwgH7oQx/q/J6E38VBR0xwjBWU1mKQxmbIo+Fn3/nOd3r4BLPZD37wg+w92ab/1re+1ct7ynBog8MSB1JRUezLX/7y2JczGkPbyLqBBmTRQ1hMlz69dqEsrAyPHj3a6rXzWxNsR+ZVFgFWdxj6TTfdVHgELmEzbK9VJRrJNIjkodgyY3uLiiWrECe6bkRuB7BD1nV7Ok0s40CwiFnuu2/zf+6+++7MgTD07oz0izY4LHG/yW9ZVBLh1BnKRtYR7u0tt9yS3c+ufWLtQlkwxKK64IjoogEyr7g98UaRBELlErLS06SQKB9pGMtqEANaJJSsakmrdYB2o5QVAoMtbpJSzz///NZb2GEb6UK9z1hUxh/qv0foQCz8ZXnRBoeF+00SIfe67Ij4VWbRNrLO3HnnnVmibh99Yu2EeVH8EAH7ZdVYygr/RzWWb3zjG2/4PQav0a8eCHOSgZZpUpI3Q/8lyTuSvcgf6DpZR1WAvmvvEvJAYjnePs4ZWOaEQfl/tMFhcU5+nUXZyDrTZ+L72gnzIqiFPF9/vC7EChJHHqK/6vSolDqHD8l0CE/DVGv2SnP6TPZKd1P6ZL7er6wW2qAMyaJsRPpBYf5f+qrGkleHvYprr7221f+V4QlPw9SOnpZpEBOeAkbGQhuUKrSRaaMwn70exgJdDhWKMBY85cSwp0kWfH3w4MHZnj177AhLTtQ2bXIcs6wHJJcBScEiY6ANShXayPRRmM/6CWN5z3vekyV7clodZfSOHDmS1U4lDjn+RlG+/JA8BJZElHnYOQN3U2QstEGpQhuZPgrz2ethLE2PmAfCVsikp+4nHvE4dIbs3LRCCx0BTyvliQJqv1qiaLnA0xBHMpsTIPPEom3r1q0jX4msK9qgVKGNTJ+1q2M+D2EsPK6//vpaf8SR6wkAAAGuSURBVI84oxh/HNmKp50ECsJgEGt33HFHll1P3DjfRxjLFE/SEhEREZHpsNIec0TxM888U/o3nAS2ZcuWwoOCYPPmzRthKKdOnco87ISphBgPCGWJUnqUlcILP1+xRUREREQkj5UW5ohiDhOoA6d4FkE8cQjzorJWnOKJB51QFgQ6XngEeVqxRURERESkiJUOZUkro3ShrC45nvZjx47NNm3aNLv88ss3wlduv/32jQoeCHtOhEohQbRNXLuIiIiIrCYrLcwXDQI8PO379u170+/xmp84cWKjZujJkydnL7/8chbqsn//fhMIRURERGQDhbmIiIiIyAT4n7EvQEREREREFOYiIiIiIpNAYS4iIiIiMgEU5iIiIiIiE0BhLiIiIiIyARTmIiIiIiITQGEuIiIiIjIBFOYiIiIiIhNAYS4iIiIiMgEU5iIiIiIiE0BhLiIiIiIyARTmIiIiIiITQGEuIiIiIjIBFOYiIiIiIhNAYS4iIiIiMgEU5iIiIiIiE0BhLiIiIiIyARTmIiIiIiITQGEuIiIiIjIBFOYiIiIiIhNAYS4iIiIiMgH+D7AODApG94LPAAAAAElFTkSuQmCC"
fomula = base64.b64decode(fomula_png)
fh = open("Tempfomula.png", "wb")
fh.write(fomula)
fh.close()
print("成功转换文件")

root = tkinter.Tk()
root.geometry("610x320+100+100")
root.title("测试")
img_LOGO = tkinter.PhotoImage(file="Tempfomula.png")
label_LOGO = tkinter.Label(root, image=img_LOGO)
label_LOGO.pack()

# 退出时检测是否存在TempLogo.png文件,如果有就删除,之后退出程序
def on_exit():
  if os.path.exists("Tempfomula.png"):
    os.remove("Tempfomula.png")
  root.quit()
root.protocol("WM_DELETE_WINDOW",on_exit)

root.mainloop()

标签: kmf磁感应直线位移传感器bsq015a振动变送器bsq015振动变送器bsq073lvdt位移变送器bsq011a振动变送器bsq015c振动变送器

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台