标签: 转载 |
分类:DSP学习 |
DSP入门必看(上)珠慕锋
DSP内部指令周期高,外部晶振主频不够,因此DSP大部分电影都有PLL。但是每个系列都不一样。 1)TMS320C2000系列: TMS320C20x:PLL可以÷2,×1,×2和×因此,外部时钟可以是5MHz-40MHz。 TMS320F240:PLL可以÷2,×1,×1.5,×2,×2.5,×3,×4,×4.5,×5和×所以外部时钟可以是2.22MHz-40MHz。 TMS320F241/C242/F243:PLL可以×所以外部时钟是5MHz。TMS320LF24xx:PLL可以由RC因此,外部时钟是4MHz-20MHz。 TMS320LF24xxA:PLL可以由RC因此,外部时钟是4MHz-20MHz。 2)TMS320C3x系列: TMS320C3x:没有PLL,因此,外部主频是工作频率的两倍。 TMS320VC33:PLL可以÷2,×1,×所以外部主频可以是12MHz-100MHz。 3)TMS320C5000系列: TMS320VC54xx:PLL可以÷4,÷2,×1-32,所以外部主频可以是0.625MHz-50MHz。 TMS320VC55xx:PLL可以÷4,÷2,×1-32,所以外部主频可以是6.25MHz-300MHz。 4)TMS320C6000系列: TMS320C62xx:PLL可以×1,×4,×6,×7,×8,×9,×10和×所以外部主频可以是11.8MHz-300MHz。 TMS320C67xx:PLL可以×1和×因此,外部主频可以是12.5MHz-230MHz。 TMS320C64xx:PLL可以×1,×6和×所以外部主频可以是30MHz-720MHz DSP指令周期快,访问慢速存储器或外设时需要添加等待。等待分为硬件等待和软件等待,每个系列的等待不完全相同。 1)对于C2000系列:硬件等待信号为READY,平时不等高电。软件等待由WSGR寄存器决定最多可以添加7个等待。程序存储器、数据存储器和数据存储器I/O可单独设置。 2)对于C3x系列:硬件等待信号/RDY,低电平不等待。总线控制寄存器中的软件等待SWW和WTCNY最多可以加7个等待,但等待是不分段的,除了电影之外,整个空间都是有效的。 3)对于C5000系列:硬件等待信号为READY,平时不等高电。软件等待由SWWCR和SWWSR寄存器决定最多可以添加14个等待。其中,程序存储器、控制程序存储器、数据存储器和I/O可单独设置。 4)对于C6000系列(仅限于非同步存储器或外设):硬件等待信号为ARDY,平时不等高电。软件等待由外部存储接口控制的存储器决定。可以设置总线访问外部存储器或设备的时间顺序,方便同步存储器或外部接口。 1)DSP电源和地连接正确。2)DSP时钟正确。3)DSP主要控制信号,如RS和HOLD信号接高电平。4)C2000的watchdog关掉。5)不能屏蔽中断NMI提高电平。 CCS或Emurst运行时提示Can'tInitializeTargetDSP” 1)模拟器连接正常吗?2)仿真器的I/O设置正确吗?3)XDSPP模拟器的电源正确吗?4)目标系统是否正确?5)模拟器正常吗?DSP是否具备工作的基本条件。 建议使用目标板进行测试。 CCS是开放的软件平台,它可以支持不同的硬件接口,因此不同的硬件接口必须通过标准的Driver同CCS连接。 请仔细阅读安装手册和安装手册Driver盘中的Readme。1)对于SEED-XDS,安装Readme中步,将I/O口设240/280/320/340。2)对于SEED-XDSPP,安装Readme中步,将I/O口设为378或278。3)对于SEED-XDSUSB,目标板必须连接安装Readme中步,将I/O口设为A,USB连接后,主机将自动激活相应的Driver。4)对于SEED-XDSPCI,安装Readme中步,将I/O口设为240,PCI接口板插入主机后,主机将自动激活相应的Driver。5)对于Simulator,需要选择不同的CFG模拟不同的文件DSP。6)对于C5402DSK,将I/O请仔细阅读安装手册和口设Driver盘中的Readme。1)对于SEED-XDS,安装Readme中步,将I/O口设240/280/320/340。2)对于SEED-XDSPP,安装Readme中步,将I/O口设为378或278。注意主机BIOS中并口的类型必须相同xds510pp.ini中一致。3)对于SEED-XDSUSB,目标板必须连接安装Readme中步,将I/O口设240/280/320/340,USB连接后,主机将自动激活相应的Driver。4)对于SEED-XDSPCI,安装Readme中步,将I/O口设240/280/320/340,PCI插入主机后,主机会自动激活相应的接口板Driver。5)对于Simulator,需要选择不同的CFG模拟不同的文件DSP。6)对于C5402DSK,将I/O口设为378或278。7)对于C6211/6711DSK,将I/O口设为378或278。8)对于C6201/C6701EVM,将I/O口设为0。 Link的cmd文件用于DSP代码的定位。由于DSP编译器的编译结果未定位,DSP每个客户设计的执行代码都没有操作系统来定位。DSP系统的配置也不同,因此用户需要定义代码的安装位置。C以5000为例,基本格式为: -osample.out -msample.map -stack100 sample.objmeminit.obj -lrts.lib MEMORY{ PAGE0:VECT:origin=0xff80,length0x80 PAGE0:PROG:origin=0x2000,length0x400 PAGE1:DATA:origin=0x800,length0x400 } SECTIONS{ .vectors:{}>PROGPAGE0 .text:{}>PROGPAGE0 .data:{}>PROGPAGE0 .cinit:{}>PROGPAGE0 .bss:{}>DATAPAGE1 } DSP开发软件集成了执行文件的程序OUT将编程器转换为可接受的格式,使编程器能够用次文件烧写EPROM或Flash。对于C2000的程序为DSPHEX;对于C3x程序为HEX30;对于C54x程序为HEX500;对于C55x程序为HEX55;对于C6x程序为Hex6x。以C以32为例,基本格式为: sample.out -x -memwidth8 -bootorg900000h -iostrb0h -strb003f0000h -strb101f0000h -osample.hex ROMS{ EPRO: org = 0x900000,len=0x02000,romwidth=8 } SECTIONS { .text: paddr=boot .data: paddr=boot } DSP的仿真器同单片机的不同,仿真器中没有DSP,提供IEEE标准的JTAG口对DSP进行仿真调试,所以仿真器必须有仿真对象,及目标系统。目标系统就是你的产品,上面必须有DSP。仿真器提供JTAG同目标系统的DSP相接,通过DSP实现对整个目标系统的调试。 1) DSP电源和地连接正确。 2)DSP时钟正确。 3)DSP的主要控制信号,如RS和HOLD信号接高电平。 4)C2000的watchdog关掉。 5)不可屏蔽中断NMI上拉高电平。 1) 仿真器连接是否正常? 2)仿真器的I/O设置是否正确? 3)XDSPP仿真器的电源是否正确? 4)目标系统是否正确? 5)仿真器是否正常?6)DSP工作的基本条件是否具备。 建议使用目标板测试。 1) DSP的C语言是标准的ANSI C,它不包括同外设联系的扩展部分,如屏幕绘图等。但在CCS中,为了方便调试,可以将数据通过prinf命令虚拟输出到主机的屏幕上。
2)DSP的C语言的编译过程为,C编译为ASM,再由ASM编译为OBJ。因此C和ASM的对应关系非常明确,非常便于人工优化。
3)DSP的代码需要绝对定位;主机的C的代码有操作系统定位。
4)DSP的C的效率较高,非常适合于嵌入系统。 在CCS下有部分客户会碰到编译工具工作不正常,常见错误为: 1)autoexec.bat的路径“out of memory”。修改autoexec.bat,清除无用的PATH路径。 2)编译的输出文件(OUT文件)写保护,无法覆盖。删除或修改输出文件的属性。 3)Windows有问题。重新安装windows。 4)Windows下有程序对CCS有影响。建议用一“干净”的计算机。 CCS下的存储器空间最好设置同你的硬件,没有的存储器不要有效。这样便于调试,CCS会发现你调入程序时或程序运行时,是否访问了无效地址。 1)在GEL文件中设置。参见CCS中的示例。 2)在Option菜单下,选择Memory Map选项,根据你的硬件设置。注意一定要将Enable Memory Mapping置为使能。 在CCS下,OUT文件加载时提示“Data verification failed...”的原因? Link的CMD文件分配的地址同GEL或设置的有效地址空间不符。中断向量定位处或其它代码、数据段定位处,没有RAM,无法加载OUT文件。解决方法: 1)调整Link的CMD文件,使得定位段处有RAM。 2)调整存储器设置,使得RAM区有效。 1)BIOS是Basic I/O System的简称,是基本的输入、输出管理。
2)用于管理任务的调度,程序实时分析,中断管理,跟踪管理和实时数据交换。
3)BIOS是基本的实时系统,使用BIOS可以方便地实现多任务、多进程的时间管理。
4)BIOS是eXpress DSP的标准平台,要使用eXpress DSP技术,必须使用BIOS。 1.TMS320C2000 TMS320C2000系列包括C24x和C28x系列。C24x系列建议使用LF24xx系列替代C24x系列,LF24xx系列的价格比C24x便宜,性能高于C24x,而且LF24xxA具有加密功能。 C28x系列主要用于大存储设备管理,高性能的控制场合。 2.TMS320C3x TMS320C3x系列包括C3x和VC33,主要推荐使用VC33。C3x系列是TI浮点DSP的基础,不可能停产,但价格不会进一步下调。 3.TMS320C5x TMS320C5x系列已不推荐使用,建议使用C24x或C5000系列替代。 4.TMS320C5000 TMS320C5000系列包括C54x和C55x系列。其中VC54xx还不断有新的器件出现,如:TMS320VC5471(DSP+ARM7)。 C55x系列是TI的第三代DSP,功耗为VC54xx的1/6,性能为VC54xx的5倍,是一个正在发展的系列。 C5000系列是目前TI DSP的主流DSP,它涵盖了从低档到中高档的应用领域,目前也是用户最多的系列。 5.TMS320C6000 TMS320C6000系列包括C62xx、C67xx和C64xx。此系列是TI的高档DSP系列。其中C62xx系列是定点的DSP,系列芯片种类较丰富,是主要的应用系列。 C67xx系列是浮点的DSP,用于需要高速浮点处理的领域。 C64xx系列是新发展,性能是C62xx的10倍。 6.OMAP系列 是TI专门用于多媒体领域的芯片,它是C55+ARM9,性能卓越,非常适合于手持设备、Internet终端等多媒体应用。 TI DSP的发展同集成电路的发展一样,新的DSP都是3.3V的,但目前还有许多外围电路是5V的,因此在DSP系统中,经常有5V和3.3V的DSP混接问题。在这些系统中,应注意: 1)DSP输出给5V的电路(如D/A),无需加任何缓冲电路,可以直接连接。 2)DSP输入5V的信号(如A/D),由于输入信号的电压>4V,超过了DSP的电源电压,DSP的外部信号没有保护电路,需要加缓冲,如 74LVC245等,将5V信号变换成3.3V的信号。 3)仿真器的JTAG口的信号也必须为3.3V,否则有可能损坏DSP。 目前DSP发展的片内存储器RAM越来越大,要设计高效的DSP系统,就应该选择片内RAM较大的DSP。片内RAM同片外存储器相比,有以下优点: 1)片内RAM的速度较快,可以保证DSP无等待运行。 2)对于C2000/C3x/C5000系列,部分片内存储器可以在一个指令周期内访问两次,使得指令可以更加高效。 3)片内RAM运行稳定,不受外部的干扰影响,也不会干扰外部。 4)DSP片内多总线,在访问片内RAM时,不会影响其它总线的访问,效率较高。 超大规模集成电路的发展从1um,发展到目前的0.1um,芯片的电源电压也随之降低,功耗也随之降低。DSP也同样从5V发展到目前的 3.3V,核心电压发展到1V。目前主流的DSP的外围均已发展为3.3V,5V的DSP的价格和功耗都价格,以逐渐被3.3V的DSP取代。 TMS320LF24xx:TPS7333QD,5V变3.3V,最大500mA。 TMS320VC33: TPS73HD318PWP,5V变3.3V和1.8V,最大750mA。 TMS320VC54xx:TPS73HD318PWP,5V变3.3V和1.8V,最大750mA; TPS73HD301PWP,5V变3.3V和可调,最大750mA。 TMS320VC55xx:TPS73HD301PWP,5V变3.3V和可调,最大750mA。 TMS320C6000: PT6931,TPS56000,最大3A。 DSP的指令周期较快,访问慢速存储器或外设时需加入等待。等待分硬件等待和软件等待,每一个系列的等待不完全相同。 1)对于C2000系列: 硬件等待信号为READY,高电平时不等待。 软件等待由WSGR寄存器决定,可以加入最多7个等待。其中程序存储器和数据存储器及I/O可以分别设置。 2)对于C3x系列: 硬件等待信号为/RDY,低电平是不等待。 软件等待由总线控制寄存器中的SWW和WTCNY决定,可以加入最多7个等待,但等待是不分段的,除了片内之外全空间有效。 3)对于C5000系列: 硬件等待信号为READY,高电平时不等待。 软件等待由SWWCR和SWWSR寄存器决定,可以加入最多14个等待。其中程序存储器、控制程序存储器和数据存储器及I/O可以分别设置。 4)对于C6000系列(只限于非同步存储器或外设): 硬件等待信号为ARDY,高电平时不等待。 软件等待由外部存储器接口控制寄存器决定,总线访问外部存储器或设备的时序可以设置,可以方便的同异步的存储器或外设接口。 为了方便DSP存储器的配置,一般DSP的中断向量可以重新定位,即可以通过设置寄存器放在存储器空间的任何地方。 注意:C2000的中断向量不能重定位。 TI的DSP最高主频可以从芯片的型号中获得,但每一个系列不一定相同。 1)TMS320C2000系列: TMS320F206-最高主频20MHz。 TMS320C203/C206-最高主频40MHz。 TMS320F24x-最高主频20MHz。 TMS320LF24xx-最高主频30MHz。 TMS320LF24xxA-最高主频40MHz。 TMS320LF28xx-最高主频150MHz。 2)TMS320C3x系列: TMS320C30:最高主频25MHz。 TMS320C31PQL80:最高主频40MHz。 TMS320C32PCM60:最高主频30MHz。 TMS320VC33PGE150:最高主频75MHz。 3)TMS320C5000系列: TMS320VC54xx:最高主频160MHz。 TMS320VC55xx:最高主频300MHz。 4)TMS320C6000系列: TMS320C62xx:最高主频300MHz。 TMS320C67xx:最高主频230MHz。 TMS320C64xx:最高主频720MHz。 可以,DSP的主频均有一定的工作范围,因此DSP均可以降频使用。 DSP的内部指令周期较高,外部晶振的主频不够,因此DSP大多数片内均有PLL。但每个系列不尽相同。 1)TMS320C2000系列: TMS320C20x:PLL可以÷2,×1,×2和×4,因此外部时钟可以为5MHz-40MHz。 TMS320F240:PLL可以÷2,×1,×1.5,×2,×2.5,×3,×4,×4.5,×5和×9,因此外部时钟可以为2.22MHz-40MHz。 TMS320F241/C242/F243:PLL可以×4,因此外部时钟为5MHz。 TMS320LF24xx:PLL可以由RC调节,因此外部时钟为4MHz-20MHz。 TMS320LF24xxA:PLL可以由RC调节,因此外部时钟为4MHz-20MHz。 2)TMS320C3x系列: TMS320C3x:没有PLL,因此外部主频为工作频率的2倍。 TMS320VC33:PLL可以÷2,×1,×5,因此外部主频可以为12MHz-100MHz。 3)TMS320C5000系列: TMS320VC54xx:PLL可以÷4,÷2,×1-32,因此外部主频可以为0.625MHz-50MHz。 TMS320VC55xx:PLL可以÷4,÷2,×1-32,因此外部主频可以为6.25MHz-300MHz。 4)TMS320C6000系列: TMS320C62xx:PLL可以×1,×4,×6,×7,×8,×9,×10和×11,因此外部主频可以为11.8MHz-300MHz。 TMS320C67xx:PLL可以×1和×4,因此外部主频可以为12.5MHz-230MHz。 TMS320C64xx:PLL可以×1,×6和×12,因此外部主频可以为30MHz-720MHz DSP的速度较快,为了保证DSP的运行速度,外部存储器需要具有一定的速度,否则DSP访问外部存储器时需要加入等待周期。 1)对于C2000系列: C2000系列只能同异步的存储器直接相接。 C2000系列的DSP目前的最高速度为150MHz。建议可以用的存储器有: CY7C199-15:32K×8,15ns,5V; CY7C1021-12:64K×16,15ns,5V; CY7C1021V33-12:64K×16,15ns,3.3V。 2)对于C3x系列: C3x系列只能同异步的存储器直接相接。 C3x系列的DSP的最高速度,5V的为40MHz,3.3V的为75MHz,为保证DSP无等待运行,分别需要外部存储器的速度<25ns和<12ns。建议可以用的存储器有: ROM: AM29F400-70:256K×16,70ns,5V,加入一个等待; AM29LV400-55(SST39VF400):256K×16,55ns,3.3V,加入两个等待(目前没有更快的Flash)。 SRAM: CY7C199-15:32K×8,15ns,5V; CY7C1021-15:64K×16,15ns,5V; CY7C1009-15:128K×8,15ns,5V; CY7C1049-15:512K×8,15ns,5V; CY7C1021V33-15:64K×16,15ns,3.3V; CY7C1009V33-15:128K×8,15ns,3.3V; CY7C1041V33-15:256k×16,15ns,3.3V。 3)对于C54x系列: C54x系列只能同异步的存储器直接相接。 C54x系列的DSP的速度为100MHz或160MHz,为保证DSP无等待运行,需要外部存储器的速度<10ns或<6ns。建议可以用的存储器有: ROM: AM29LV400-55(SST39VF400):256K×16,55ns,3.3V,加入5或9个等待(目前没有更快的Flash)。 SRAM: CY7C1021V33-12:64K×16,12ns,3.3V,加入一个等待; CY7C1009V33-12:128K×8,12ns,3.3V,加入一个等待。 4)对于C55x和C6000系列: TI的DSP中只有C55x和C6000可以同同步的存储器相连,同步存储器可以保证系统的数据交换效率更高。 ROM: AM29LV400-55(SST39VF400):256K×16,55ns,3.3V。 SDRAM: HY57V651620BTC-10S:64M,10ns。 SBSRAM: CY7C1329-133AC,64k×32; CY7C1339-133AC,128k×32。 FIFO:CY7C42x5V-10ASC,32k/64k×18。 DSP的驱动能力较强,可以不加驱动,连接8个以上标准TTL门。 1)单步可以运行,连续运行时总回0地址: Watchdog没有关,连续运行复位DSP回到0地址。 2)OUT文件不能load到片内flash中: Flash不是RAM,不能用简单的写指令写入,需要专门的程序写入。CCS和C Source Debugger中的load命令,不能对flash写入。 OUT文件只能load到片内RAM,或片外RAM中。 3)在flash中如何加入断点: 在flash中可以用单步调试,也可以用硬件断点的方法在flash中加入断点,软件断点是不能加在ROM中的。硬件断点,设置存储器的地址,当访问该地址时产生中断。 4)中断向量: C2000的中断向量不可重定位,因此中断向量必须放在0地址开始的flash内。在调试系统时,代码放在RAM中,中断向量也必须放在flash内。 1) TMS320C32的存储器配置: TMS320C32的程序存储器可以配置为16位或32位;数据存储器可以配置为8位、16位或32位。 2)TMS320VC33的PLL控制: TMS320VC33的PLL控制端只能接1.8V,不能接3.3V或5V。 对于有MPSD仿真口的DSP(TMS320C30/C31/C32),不能用一套仿真器同时调试,每次只能调试其中的一个DSP;对于有JTAG仿真口的DSP,可以将JTAG串接在一起,用一套仿真器同时调试多个DSP,每个DSP可以用不同的名字,在不同的窗口中调试。注意:如果在JTAG和DSP间加入驱动,一定要用快速的门电路,不能使用如LS的慢速门电路。 DSP的速度较快,要求译码的速度也必须较快。利用小规模逻辑器件译码的方式,已不能满足DSP系统的要求。同时,DSP系统中也经常需要外部快速部件的配合,这些部件往往是专门的电路,有可编程器件实现。 CPLD的时序严格,速度较快,可编程性好,非常适合于实现译码和专门电路。 1) 电源: TPS73HD3xx,TPS7333,TPS56100,PT64xx... 2)Flash: AM29F400,AM29LV400,SST39VF400... 3)SRAM: CY7C1021,CY7C1009,CY7C1049... 4)FIFO: CY7C425,CY7C42x5... 5)Dual port: CY7C136,CY7C133,CY7C1342... 6)SBSRAM: CY7C1329,CY7C1339... 7)SDRAM: HY57V651620BTC... 8)CPLD: CY37000系列,CY38000系列,CY39000系列... 9)PCI: PCI2040,CY7C09449... 10)USB: AN21xx,CY7C68xxx... 11)Codec:TLV320AIC23,TLV320AIC10... 12)A/D,D/A:ADS7805,TLV2543... 具体资料见www.ti.com, http://www.cypress.com/ DSP的速度尽快,EPROM或flash的速度较慢,而DSP片内的RAM很快,片外的RAM也较快。为了使DSP充分发挥它的能力,必须将程序代码放在RAM中运行。为了方便的将代码从ROM中搬到RAM中,在不带flash的DSP中,TI在出厂时固化了一段程序,在上电后完成从ROM或外设将代码搬到用户指定的RAM中。此段程序称为“boot loader”。 在MC/MP管脚为高时,C3x进入boot状态。C3x的boot loader在reset时,判断外部中断管脚的电平。根据中断配置决定boot的方式为存储器加载还是串口加载,其中ROM的地址可以为三个中的一个,ROM可以为8位。 1)仔细检查boot的控制字是否正确。 2)仔细检查外部管脚设置是否正确。 3)仔细检查hex文件是否转换正确。 4)用仿真器跟踪boot过程,分析错误原因。 DSP在RESET后,许多的寄存器的初值一般同用户的要求不一致,例如:等待寄存器,SP,中断定位寄存器等,需要通过初始化程序设置为用户要求的数值。 初始化程序的主要作用: 1)设置寄存器初值。 2)建立中断向量表。 3)外围部件初始化。 TI公司为了方便客户开发DSP,在它的网站上提供了许多程序的示例和应用程序,如MATH库,FFT,FIR/IIR等,可以在TI的网页免费下载。 TI有许多的Third Party可以通过DSP上的多种算法软件。可以通过TI的网页搜索你所需的算法,找到通过算法的公司,同相应的公司联系。注意这些算法都是要付费的。