VGA介绍 VGA(Video Graphics Array)视频图形阵列是IBM使用模拟信号的计算机显示标准于1987年提出。VGA接口是电脑VGA标准输出数据的专用接口。VGA接口有15针,分为3排,每排5个孔,显卡上应用最广泛的接口类型,绝大多数显卡都有这种接口。它传输红、绿、蓝模拟信号和同步信号(水平和垂直信号)。
VGA接口为D型接口,上面有15针孔,分为三排,每排5个。 除了两个NC(Not Connect)3个显示数据总线和5个信号GND三个信号更重要RGB彩色分量信号和2个扫描同步信号HSYNC和VSYNC针。VGA采用接口中的彩色分量RS343电平标准。RS343电平标准峰值电压为1V。VGA接口是显卡上应用最广泛的接口类型,大多数显卡都有这种接口。有些不带VGA接口而带有DVI(Digital Visual Interface数字视频接口)接口的显卡也可以通过简单的转接器DVI接口转成VGA通常没有接口VGA接口的显卡将配备此类转接头。 大多数计算机和外部显示设备都是通过模拟的VGA接口连接,计算机内部以数字形式生成的显示图像信息,字/模拟转换器转换为R、G、B通过电缆将三原色信号、行、场同步信号传输到显示设备。模拟显示设备,如模拟CRT信号直接发送到相应的处理电路,驱动控制显像管生成图像。而对于LCD、DLP相应的数字显示设备应配置在显示设备中A/D(模拟/数字)转换器将模拟信号转换为数字信号。在经过D/A和A/D两次转换后,不可避免地会造成一些图像细节的损失。VGA接口应用于CRT显示器是可以理解的,但对于连接液晶等显示设备,转换过程中的图像损失会略微降低显示效果。 而且可以从界面判断显卡是独特的还是集成的,VGA垂直接口的描述是集成显卡,VGA水平接口说明是一个独立的显卡(一般台式主机可以用这种方法查看)。
VGA显示原理: VGA模拟电压(0V-0.714V)红、绿、蓝三种颜色,不同的电压值对应不同的颜色。 VGA驱动显示器采用扫描方式,一般逐行扫描。 逐行扫描从屏幕左上角开始,从左到右逐步扫描。每次扫描后,电子束将回到屏幕左下角的起始位置。在此期间,CRT消除电子束,每行结束时使用同步信号; 扫描完所有行并形成一帧后,用场同步信号同步场,使扫描回到屏幕左上角,同时隐藏场,开始下一帧。
FPGA芯片驱动VGA在数模转换器的帮助下,需要先生成模拟信号D/A,利用D/A产生模拟信号,输出至VGA的RED、GREEN、BLUE基色数据线。另一种方法是利用电阻网络分流模拟D/A实现的。
VGA通信协议
VS:帧时序 帧时序的四个部分是:同步脉冲(Sync o)、显示后沿(Back porch p)、显示时序段(Display interval q)和显示前沿(Front porchr)。同步脉冲(Sync o)、显示后沿(Back porch p)和显示前沿(Front porch r)是消隐区,RGB信号无效,屏幕不显示数据。显示时序段(Display interval q)是有效数据区。
HS:行时序 行时序的四个部分是:同步脉冲(Sync a)、显示后沿(Back porch b)、显示时序(Display interval c)和显示前沿(Front porchd)。同步脉冲(Sync a)、显示后沿(Back porch b)和显示前沿(Front porch d)是消隐区,RGB信号无效,屏幕不显示数据。显示时序段(Display interval c)是有效数据区。
VGA时序解析
一、VGA显示字符
代码实现
module VGA_test( OSC_50, //原CLK2_50时钟信号 VGA_CLK, //VGA自时钟 VGA_HS, //行同步信号 VGA_VS, //场同步信号 VGA_BLANK, /// 当BLANK为低电平时模拟视频输出消隐电平R9~R0,G9~G0,B9~B0输入的所有数据都被忽略了 VGA_SYNC, ///符合同步控制信号 行时序和场时序应产生同步脉冲 VGA_R, //VGA绿色 VGA_B, //VGA蓝色 VGA_G); //VGA绿色 input OSC_50; ///外部时钟信号CLK2_50 output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC; output [7:0] VGA_R,VGA_B,VGA_G; parameter H_FRONT = 16; ///行同步前沿信号周期长 parameter H_SYNC = 96; ///行同步信号周期长 parameter H_BACK = 48; ///行同步后沿信号周期长 parameter H_ACT = 640; //行显示周期长 parameter H_BLANK = H_FRONT H_SYNC H_BACK; ///行空白信号总周期长 parameter H_TOTAL = H_FRONT H_SYNC H_BACK H_ACT; ///行总周期长耗时 parameter V_FRONT = 11; ///同步前沿信号周期长 parameter V_SYNC = 2; //同步信号周期长 parameter V_BACK = 31; ///同步后沿信号周期长 parameter V_ACT = 480; //场显示周期长 parameter V_BLANK = V_FRONT V_SYNC V_BACK; ///场空白信号总周期长 parameter V_TOTAL = V_FRONT V_SYNC V_BACK V_ACT; //场总周期长耗时 reg [10:0] H_Cont; //行周期计数器 reg [10:0] V_Cont; //场周期计数器 wire [7:0] VGA_R; //VGA红色控制线 wire [7:0] VGA_G; //VGA绿色控制线 wire [7:0] VGA_B; //VGA蓝色控制线 reg VGA_HS; reg VGA_VS; reg [10:0] X; // reg [10:0] Y; ///目前场的第几行 reg CLK_25; always@(posedge OSC_50) begin CLK_25=~CLK_25; //时钟 end assign VGA_SYNC = 1'b0; //同步信号低电平 assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK)); ///当行计数器小于行空白总长或场计数器小于场空白总长时,低电平空白信号 assign VGA_CLK = ~CLK_to_DAC; //VGA时钟等于CLK_25取反 assign CLK_to_DAC = CLK_25; always@(posedge CLK_to_DAC) begin if(H_Cont<H_TOTAL) //如果行计数器小于行总时长 H_Cont<=H_Cont 1'b1; //行计数器 1 else H_Cont<=0; //否则,行计数器将被清除 if(H_Cont==H_FRONT-1) /如果行计数器等于行前空白时间-1 VGA_HS<=1'b0; //行同步信号置0 if(H_Cont==H_FRONT H_SYNC-1) //如果行计数器等于前沿 行同步-1 VGA_HS<=1'b1; //行同步信号置1 if(H_Cont>=H_BLANK) //如果行计数器大于或等于行空白的总长度 X<=H_Cont-H_BLANK; //X等于行计数器-行空白的总长度 (X为当前行第几个像素点) else X<=0; //否则X为0 end always@(posedge VGA_HS) begin if(V_Cont<V_TOTAL) //如果场计数器小于行总时间 V_Cont<=V_Cont 1'b1; //场计数器 1 else V_Cont<=0; //否则,场计数器将被清除 if(V_Cont==V_FRONT-1) /如果场计数器等于场前空白时间-1 VGA_VS<=1'b0; /场同步信号置0 if(V_Cont==V_FRONT V_SYNC-1) //如果场计数器等于前沿 场同步-1 VGA_VS<=1'b1; /场同步信号置1 if(V_Cont>=V_BLANK) //如果场计数器大于或等于场空 Y<=V_Cont-V_BLANK; //Y等于场计数器-场空白的总长度 (Y为当前场第几行) else Y<=0; //否则Y为0 end reg valid_yr; always@(posedge CLK_to_DAC) if(V_Cont == 10'd32) //场计数器=32时
valid_yr<=1'b1; //行输入激活
else if(V_Cont==10'd512) //场计数器=512时
valid_yr<=1'b0; //行输入冻结
wire valid_y=valid_yr; //连线
reg valid_r;
always@(posedge CLK_to_DAC)
if((H_Cont == 10'd32)&&valid_y) //行计数器=32时
valid_r<=1'b1; //像素输入激活
else if((H_Cont==10'd512)&&valid_y) //行计数器=512时
valid_r<=1'b0; //像素输入冻结
wire valid = valid_r; //连线
wire[10:0] x_dis; //像素显示控制信号
wire[10:0] y_dis; //行显示控制信号
assign x_dis=X; //连线X
assign y_dis=Y; //连线Y
parameter
char_line00=240'h010010400000000000000000000000000000000000000000000000000000,
char_line01=240'h010010400000000000000000000000000000000000000000000000000000,
char_line02=240'h7FFCFE780000000000000000000000000000000000000000000000000000,
char_line03=240'h03801088000007F00FE000800FE007E01FFC07E007F007E00FE000800080,
char_line04=240'h05407C100000081830180780301818183008181808181818301807800780,
char_line05=240'h092011FC0000100038180180300C381C2010381C1000381C381801800180,
char_line06=240'h3118FE240000300000180180700C300C0020300C3000300C001801800180,
char_line07=240'hC10600247FFE37F000600180301C300C0040300C37F0300C006001800180,
char_line08=240'h0FE07DFE0000380C01F00180382C300C0080300C380C300C01F001800180,
char_line09=240'h004044240000300C001801800FCC300C0180300C300C300C001801800180,
char_line0a=240'h00807C240000300C000C0180001C300C0300300C300C300C000C01800180,
char_line0b=240'hFFFE45FC0000300C380C01800018381803003818300C3818380C01800180,
char_line0c=240'h01007C24000018183018018038301C1003801C1018181C10301801800180,
char_line0d=240'h01004420000007E00FE00FF80FC007E0030007E007E007E00FE00FF80FF8,
char_line0e=240'h050054A00000000000000000000000000000000000000000000000000000,
char_line0f=240'h020048400000000000000000000000000000000000000000000000000000;
reg[7:0] char_bit;
always@(posedge CLK_to_DAC)
if(X==10'd180)char_bit<=9'd240; //当显示到144像素时准备开始输出图像数据
else if(X>10'd180&&X<10'd420) //左边距屏幕144像素到416像素时 416=144+272(图像宽度)
char_bit<=char_bit-1'b1; //倒着输出图像信息
reg[29:0] vga_rgb; //定义颜色缓存
always@(posedge CLK_to_DAC)
if(X>10'd180&&X<10'd420) //X控制图像的横向显示边界:左边距屏幕左边144像素 右边界距屏幕左边界416像素
begin case(Y) //Y控制图像的纵向显示边界:从距离屏幕顶部160像素开始显示第一行数据
10'd200:
if(char_line00[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000; //如果该行有数据 则颜色为红色
else vga_rgb<=30'b0000000000_0000000000_0000000000; //否则为黑色
10'd201:
if(char_line01[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd202:
if(char_line02[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd203:
if(char_line03[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd204:
if(char_line04[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd205:
if(char_line05[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd206:
if(char_line06[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd207:
if(char_line07[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd208:
if(char_line08[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd209:
if(char_line09[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd210:
if(char_line0a[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd211:
if(char_line0b[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd212:
if(char_line0c[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd213:
if(char_line0d[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd214:
if(char_line0e[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
10'd215:
if(char_line0f[char_bit])vga_rgb<=30'b1111111111_0000000000_0000000000;
else vga_rgb<=30'b0000000000_0000000000_0000000000;
default:vga_rgb<=30'h0000000000; //默认颜色黑色
endcase
end
else vga_rgb<=30'h000000000; //否则黑色
assign VGA_R=vga_rgb[23:16];
assign VGA_G=vga_rgb[15:8];
assign VGA_B=vga_rgb[7:0];
endmodule
2、VGA显示彩色条纹
代码实现
module VGA_colorbar_test(
OSC_50, //原CLK2_50时钟信号
VGA_CLK, //VGA自时钟
VGA_HS, //行同步信号
VGA_VS, //场同步信号
VGA_BLANK, //复合空白信号控制信号 当BLANK为低电平时模拟视频输出消隐电平,此时从R9~R0,G9~G0,B9~B0输入的所有数据被忽略
VGA_SYNC, //符合同步控制信号 行时序和场时序都要产生同步脉冲
VGA_R, //VGA绿色
VGA_B, //VGA蓝色
VGA_G); //VGA绿色
input OSC_50; //外部时钟信号CLK2_50
output VGA_CLK,VGA_HS,VGA_VS,VGA_BLANK,VGA_SYNC;
output [7:0] VGA_R,VGA_B,VGA_G;
parameter H_FRONT = 16; //行同步前沿信号周期长
parameter H_SYNC = 96; //行同步信号周期长
parameter H_BACK = 48; //行同步后沿信号周期长
parameter H_ACT = 640; //行显示周期长
parameter H_BLANK = H_FRONT+H_SYNC+H_BACK; //行空白信号总周期长
parameter H_TOTAL = H_FRONT+H_SYNC+H_BACK+H_ACT; //行总周期长耗时
parameter V_FRONT = 11; //场同步前沿信号周期长
parameter V_SYNC = 2; //场同步信号周期长
parameter V_BACK = 31; //场同步后沿信号周期长
parameter V_ACT = 480; //场显示周期长
parameter V_BLANK = V_FRONT+V_SYNC+V_BACK; //场空白信号总周期长
parameter V_TOTAL = V_FRONT+V_SYNC+V_BACK+V_ACT; //场总周期长耗时
reg [10:0] H_Cont; //行周期计数器
reg [10:0] V_Cont; //场周期计数器
wire [7:0] VGA_R; //VGA红色控制线
wire [7:0] VGA_G; //VGA绿色控制线
wire [7:0] VGA_B; //VGA蓝色控制线
reg VGA_HS;
reg VGA_VS;
reg [10:0] X; //当前行第几个像素点
reg [10:0] Y; //当前场第几行
reg CLK_25;
always@(posedge OSC_50)begin
CLK_25=~CLK_25; //时钟
end
assign VGA_SYNC = 1'b0; //同步信号低电平
assign VGA_BLANK = ~((H_Cont<H_BLANK)||(V_Cont<V_BLANK)); //当行计数器小于行空白总长或场计数器小于场空白总长时,空白信号低电平
assign VGA_CLK = ~CLK_to_DAC; //VGA时钟等于CLK_25取反
assign CLK_to_DAC = CLK_25;
always@(posedge CLK_to_DAC)begin
if(H_Cont<H_TOTAL) //如果行计数器小于行总时长
H_Cont<=H_Cont+1'b1; //行计数器+1
else H_Cont<=0; //否则行计数器清零
if(H_Cont==H_FRONT-1) //如果行计数器等于行前沿空白时间-1
VGA_HS<=1'b0; //行同步信号置0
if(H_Cont==H_FRONT+H_SYNC-1) //如果行计数器等于行前沿+行同步-1
VGA_HS<=1'b1; //行同步信号置1
if(H_Cont>=H_BLANK) //如果行计数器大于等于行空白总时长
X<=H_Cont-H_BLANK; //X等于行计数器-行空白总时长 (X为当前行第几个像素点)
else X<=0; //否则X为0
end
always@(posedge VGA_HS)begin
if(V_Cont<V_TOTAL) //如果场计数器小于行总时长
V_Cont<=V_Cont+1'b1; //场计数器+1
else V_Cont<=0; //否则场计数器清零
if(V_Cont==V_FRONT-1) //如果场计数器等于场前沿空白时间-1
VGA_VS<=1'b0; //场同步信号置0
if(V_Cont==V_FRONT+V_SYNC-1) //如果场计数器等于行前沿+场同步-1
VGA_VS<=1'b1; //场同步信号置1
if(V_Cont>=V_BLANK) //如果场计数器大于等于场空白总时长
Y<=V_Cont-V_BLANK; //Y等于场计数器-场空白总时长 (Y为当前场第几行)
else Y<=0; //否则Y为0
end
reg valid_yr;
always@(posedge CLK_to_DAC)begin
if(V_Cont == 10'd32) //场计数器=32时
valid_yr<=1'b1; //行输入激活
else if(V_Cont==10'd512) //场计数器=512时
valid_yr<=1'b0; //行输入冻结
end
wire valid_y=valid_yr; //连线
reg valid_r;
always@(posedge CLK_to_DAC)begin
if((H_Cont == 10'd32)&&valid_y) //行计数器=32时
valid_r<=1'b1; //像素输入激活
else if((H_Cont==10'd512)&&valid_y) //行计数器=512时
valid_r<=1'b0; //像素输入冻结
end
wire valid = valid_r; //连线
assign x_dis=X; //连线X
assign y_dis=Y; //连线Y
// reg[7:0] char_bit;
// always@(posedge CLK_to_DAC)
// if(X==10'd144)char_bit<=9'd240; //当显示到144像素时准备开始输出图像数据
// else if(X>10'd144&&X<10'd384) //左边距屏幕144像素到416像素时 416=144+272(图像宽度)
// char_bit<=char_bit-1'b1; //倒着输出图像信息
reg[29:0] vga_rgb; //定义颜色缓存
always@(posedge CLK_to_DAC) begin
if(X>=0&&X<200)begin //X控制图像的横向显示边界:左边距屏幕左边144像素 右边界距屏幕左边界416像素
vga_rgb<=30'hffffffffff; //白色
end
else if(X>=200&&X<400)begin
vga_rgb<=30'hf00ff65f1f;
end
else if(X>=400&&X<600)begin
vga_rgb<=30'h9563486251;
end
else begin
vga_rgb<=30'h5864928654;
end
end
assign VGA_R=vga_rgb[23:16];
assign VGA_G=vga_rgb[15:8];
assign VGA_B=vga_rgb[7:0];
endmodule
2、VGA显示彩色图片
该部分使用了EP4CE6F17C8 在前面的学习中了解到图像的格式有多种,例如JPEG,BMP,PNG,JPG等,图像的位数也有单色、16色、256色、4096色、16位真彩色、24位真彩色、32位真彩色在这里插入图片描述 这几种。 VGA的驱动程序显示的格式为RGB565,我们先找到一张需要显示的彩色图片,经过处理,将该图片转化为ROM可以存储的格式,然后VGA驱动程序从ROM中读取数据,输出到VGA显示屏显示。尽量选一张小的图片,因为ROM存储空间有限。 使用BMP2Mif软件将bmp格式图片转换为hex文件
新建Quartus工程,产生ROM IP核,将生成的mif文件保存在ROM中 双击选择ROM:1-PORT
代码实现
`define vga_640_480
`include "vga_para.v"
module vga_ctrl(
input clk ,//时钟信号 //25.2MHZ
input rst_n ,//复位信号
output reg vsync ,
output reg hsync ,
output reg [4 :0] vga_r ,
output reg [4 :0] vga_b ,
output reg [5 :0] vga_g
);
//参数定义
parameter H_SYNC_START = 1,
H_SYNC_STOP = `H_Sync_Time ,
H_DATA_START = `H_Sync_Time + `H_Back_Porch + `H_Left_Border,
H_DATA_STOP = `H_Sync_Time + `H_Back_Porch + `H_Left_Border + `H_Data_Time,
V_SYNC_START = 1,
V_SYNC_STOP = `V_Sync_Time,
V_DATA_START = `V_Sync_Time + `V_Back_Porch + `V_Top_Border,
V_DATA_STOP = `V_Sync_Time + `V_Back_Porch + `V_Top_Border + `V_Data_Time;
//信号定义
reg [11:0] cnt_h_addr ;//行地址计数器
wire add_h_addr ;
wire end_h_addr ;
reg [11:0] cnt_v_addr ;//长地址计数器
wire add_v_addr ;
wire end_v_addr ;
reg [13:0] address ;
wire [15:0] q ;
reg vga_clk ;
wire [15:0] data_disp ;
reg [10:0] h_addr ;//数据有效显示区域行地址
reg [10:0] v_addr ;//数据有效显示区域场地址
wire flag_begin_h ;
wire flag_begin_v ;
wire flag_clear_address ;
wire flag_enable_out2 ;
assign vga_sync = 1'b0;
pll pll_inst (
.areset ( !rst_n ),
.inclk0 ( clk ),
.c0 ( c0 ),//50MHZ
.c1 ( c1 ) //25MHZ
);
always@(posedge clk or negedge rst_n)begin
if(!rst_n)begin
vga_clk <= clk;
end
else begin
vga_clk <= c1;
end
end
always@(posedge vga_clk or negedge rst_n)begin
if(!rst_n)begin
cnt_h_addr <= 12'd0;
end
else if(add_h_addr)begin
if(end_h_addr)begin
cnt_h_addr <= 12'd0;
end
else begin
cnt_h_addr <= cnt_h_addr + 12'd1;
end
end
else begin
cnt_h_addr <= 12'd0;
end
end
assign add_h_addr = 1'b1;
assign end_h_addr = add_h_addr && cnt_h_addr == `H_Total_Time - 1;
always@(posedge vga_clk or negedge rst_n)begin
if(!rst_n)begin
cnt_v_addr <= 12'd0;
end
else if(add_v_addr)begin
if(end_v_addr)begin
cnt_v_addr <= 12'd0;
end
else begin
cnt_v_addr <= cnt_v_addr + 12'd1;
end
end
else begin
cnt_v_addr <= cnt_v_addr;
end
end
assign add_v_addr = end_h_addr;
assign end_v_addr = add_v_addr && cnt_v_addr == `V_Total_Time - 1;
//行场同步信号
always@(posedge vga_clk or negedge rst_n)begin
if(!rst_n)begin
hsync <= 1'b1;
end
else if(cnt_h_addr == H_SYNC_START - 1)begin
hsync <= 1'b0;
end
else if(cnt_h_addr == H_SYNC_STOP - 1)begin
hsync <= 1'b1;
end
else begin
hsync <= hsync;
end
end
always@(posedge vga_clk or negedge rst_n)begin
if(!rst_n)begin
vsync <= 1'b1;
end
else if(cnt_v_addr == V_SYNC_START - 1)begin
vsync <= 1'b0;
end
else if(cnt_v_addr == V_SYNC_STOP - 1)begin
vsync <= 1'b1;
end
else begin
vsync <= vsync;
end
end
//数据有效显示区域定义
always@(posedge vga_clk or negedge rst_n)begin
if(!rst_n)begin
h_addr <= 11'd0;
end
else if((cnt_h_addr >= H_DATA_START - 1) &&( cnt_h_addr <= H_DATA_STOP - 1))begin
h_addr <= cnt_h_addr - H_DATA_START - 1;
end
else if(address == 48*48 - 1) begin
h_addr <= 11'd0;
end
end
always@(posedge vga_clk or negedge rst_n)begin
if(!rst_n)begin
v_addr <= 11'd0;
end
else if((cnt_v_addr >= V_DATA_START - 1) && (cnt_v_addr <= V_DATA_STOP - 1))begin
v_addr <= cnt_v_addr - V_DATA_START -1;
end
else if(address == 48*48 - 1) begin
v_addr <= 11'd0;
end
end
//显示数据
always@(posedge vga_clk or negedge rst_n)begin
if(!rst_n)begin
vga_r <= 5'b0;
vga_g <= 6'b0;
vga_b <= 5'b0;
end
else if((cnt_h_addr >= H_DATA_START - 1) &&( cnt_h_addr <= H_DATA_STOP - 1)
&& (cnt_v_addr >= V_DATA_START - 1) && (cnt_v_addr <= V_DATA_STOP - 1))begin
vga_r <= data_disp[15:11];
vga_g <= data_disp[10: 5];
vga_b <= data_disp[4 : 0];
end
else begin
vga_r <= 5'b0;
vga_g <= 6'b0;
vga_b <= 5'b0;
end
end
assign data_disp = q;
//ROM地址计数器
always @( posedge vga_clk or negedge rst_n ) begin
if ( !rst_n ) begin
address <= 0;
end
else if ( flag_clear_address ) begin //计数满清零
address <= 0;
end
else if ( flag_enable_out2 ) begin //在有效区域内+1
address <= address + 1;
end
else begin //无效区域保持
address <= address;
end
end
assign flag_clear_address = address == 48 * 48 - 1;
assign flag_begin_h = h_addr > ( ( 640 - 48 ) / 2 ) && h_addr < ( ( 640 - 48 ) / 2 ) + 48 + 1;
assign flag_begin_v = v_addr > ( ( 480 - 48 )/2 ) && v_addr <( ( 480 - 48 )/2 ) + 48 + 1;
assign flag_enable_out2 = flag_begin_h && flag_begin_v;
rom rom_inst (
.address ( address),
.clock ( vga_clk),
.q ( q )
);
endmodule
总结
使用VGA显示,先弄清楚VAG显示原理,将显示屏看为N*M大小的一个坐标系,为每个坐标分配一个RGB三通道的值,也就是每个像素,行场信号扫描的速度很快,就能连成一副完整的图像。图片显示需要用到ROM来存储图片数据,在显示时,从ROM中取出数据赋给相应的RBG通道就能显示了。