在大数据和人工智能时代,城市逐渐具有统一逻辑 如何改造工业生态智能,如何升级城市商业场景和服务,如何影响政府治理模式,智能城市专家王鹏以未来城市一切都可以运营为主题,整理了这篇长文章的总结。
一、 未来的城市将逐渐具有统一逻辑
二、 对几家武林高手企业的研判
三、 数据驱动的产业共生
四、 从城市运营商到万物运营商
五、 智慧城市两个方向(上)
六、 智慧城市两个方向(下)
七、 数字孪生
八、 5G
九、 场景规划
十、 基础设施
十一、智慧城市终极模型
城市一直是人类文明最高成就的体现。但城市一直只是一个容器,可以容纳各种技术和产品。城市本身太复杂了,从来没有成为。
现在,有了互联网和物联网,有了人工智能,城市里的一切都逐渐有了统一的逻辑,甚至有可能合作。这种逻辑被称为数据。
毕竟,世界的本质不是物质,而是数据。即使是人类自身的传承,本质上也是数据的编码。
在数据逻辑下,城市的演变最终将成为一种可以由企业制造和运营的产品。这样的企业也将具有可怕的能量和活力,超出我们所有的想象。然而,这种产品在装配线上并不是一样的,更不用说所有可预测的计划经济了,而是一个高度自由和多变的生命体。城市的真正创造者和所有者必须是公民。技术的最大结果是无处不在,但无色无色。
这个未来已经发生了,google得其神,阿里得其意,华夏幸福得其形,腾讯得其血,万科得其骨,华为得其筋。
读者似乎对上一篇文章中提到的对几家企业在智慧城市领域地位的判断感兴趣。有人说武林大师有自己独特的技能,所以这篇文章是专门写的。
“google得其神,阿里得其意,华夏幸福得其形,腾讯得其血,万科得其骨,华为得其筋……”
Google智慧城市的理想是通过sidewalklabs实现的。在多伦多滨水区,它只公布了一个规划设计,建造了一个展厅,成为世界智慧城市建设的新领导者。北美的主要城市都邀请了它。但在这背后,一方面,它在智能城市产业领域的巨大投资布局,通过一个故事和一个示范,推动了全球巨大的投资企业订单;另一方面,多伦多滨水区规划确实展示了对城市系统和规划建设运营管理全过程的完美理解,从规划空间结构到建设系统,到可操作的基础设施系统,到数据驱动的精细管理手段,依靠数据操作真正实现可持续收益。产业投资和城市运营并举,包括对市民参与、对生态、对公平等的兼顾,堪称经典之作,得智慧城市全部精神内涵,故曰得其“神”。
阿里,从卖货到卖云的转型,虽然有AWS先垂范,还是挺厉害的。线上,尤其是电商流量必然枯竭,线下入口的竞争几乎是互联网未来的全部。阿里云依靠城市大脑信号灯配时的故事,一路攻城掠地,成为国家战略。在省会城市智能交通项目中,传统信息集成商措手不及,无需投标单一来源采购。近几个月来,新的定位关键词,如新的基础设施、物联网平台等,也看到了它的冷静和克制。我相信它会讲一个好的顶层故事,然后专注于中下层业务。它将在G端和B端有良好的商业表现。这是一种适合中国现实的模式。可以看出,智慧城市的商业意义已经被发现,因此被称为意义。然而,阿里巴巴仍然存在传统信息集成商的致命缺陷,即缺乏解决城市问题的能力。讲故事的场景太差,很容易沉浸在传统政府信息化的舒适区。刚才与华夏幸福的战略合作是招募精彩的好棋,可能会得到很多可以练手的城市场景。
腾讯,作为中国两大互联网巨头之一,不可能不关注这个巨大的市场,但还没有找到高调干预的切入点。事实上,腾讯在物联网、智能家居、无人驾驶、共享旅游、地图、人工智能等智能城市的核心技术领域,仅防御布局就是一场大棋。腾讯依托微信入口,在城市服务方面具有明显优势,渗透社区市场;通过建设滨海科技大厦智能建筑平台,也拥有战略战略建筑智能平台,具有未来智能城市运营系统的原型能力。但最重要的是它连接人的能力。从人与人,到人与物,到物与物,最后连接一切。市民及其需求是智慧城市的核心,最接近人的入口价值是无限的。当然,随着越来越多的城市场景和线下入口的开放,社交网络的优势能否继续是一个巨大的挑战。对腾讯来说,以微战略产品为突破口,全面布局城市物联网平台,仍有可能继续成为阿里巴巴的头号竞争对手。连接二字的价值不亚于人的血。
华夏幸福,被称为工业新城运营商,两个核心技能,做工业,建城市。世界上很难找到第二家,能够独立完成城市规划、建设、运营和管理的企业,世界上很难找到第二家。在这方面,它几乎是几个家庭中唯一不可替代的,几乎掌握了几乎所有的城市场景,包括住宅业务,涵盖基础设施和公共服务。在产业方面,政府吸引投资非常强大,但也做孵化器投资早期。更重要的是,跟着google同样,老板也投资了无人驾驶、共享旅游、新能源汽车、基础设施、生态修复等智慧城市相关产业……离完美的智慧城市运营商只有一步之遥。事实上,它是将工业和城市领域的能力真正结合起来,实现城市和产业的升级,或新的智慧IP注入,可以无敌于。事实上,缺失可能只是SidewalkToronto这样的故事。
万科作为宇宙中各种意义上的第一个房地产开发商,也引领着房地产行业在这个去杠杆化的前沿改名改行的趋势。深圳万科房地产有限公司刚刚更名为深圳万科发展有限公司,进一步迭代升级为城乡建设和生活服务提供商,在巩固住宅开发和物业服务固有优势的基础上,业务已延伸到商业开发经营、物流仓储服务、租赁住房、工业城镇、冰雪度假、养老、教育等领域。这些重资产经营的工作很累,赚钱也很慢。因此,转变更高端的科技企业形象,发展到城市运营的高级阶段,即数据运营,应该是其真正的意图。虽然万科在运营方面表现暂时不容易评价,但万科的技术储备在建设上应该是无可争议的行业领导者。多年来,万科孤独前行,在以预制住宅为核心的住宅产业化道路上一骑绝尘。在未来的城市中,灵活的设系统支持的灵活空间系统是实现空间共享、功能混合、结构轻的前提。只有这样,才能实现施工过程的数据驱动,为空间的运行提供保证,sidewalk也就是因为google投资模块化建筑公司FactoryOS,才有信心进入建筑业,类似类似的软银巨额投资。Katerra。因此,万科掌握了未来建设科技的机遇,即城市的物质空间骨架,因此被称为骨。因此,万科抓住了未来建设科技的机遇,即城市的物质空间骨架,因此被称为骨头。总的来说,对信息技术的不敏感是万科和所有房地产企业转型的严重伤害IT在企业合作中,无法沟通的话语系统可能是其最大的障碍。
华为,作为以技术实力着称的传统电信设备商和系统集成商,一直是智慧城市市场上低调但又不可忽略的力量。从云到端,整个IoT数据链路的每一个环节都离不开华为的设备产品。终端,芯片,5G、LoRa、NB-IoT……他们都有能力决定市场技术的发展趋势。2012年实验室专注于颠覆性黑色技术,比阿里达摩研究所更早深入研究基础。其目标是构建万物互联的智能世界。很难说华为是否能做到,但没有华为,似乎没有人能做到。在互联网时代,华为完全依靠技术实力来保持存在感,但缺乏互联网和运营基因严重影响了其未来的市场地位。华为应该已经看到了这个问题,所以建立了一个场景实验室,深入培养实际场景需求。在智慧城市建设中,数据链接是数字双胞胎的基础。如果真正的建筑结构是骨头,那么虚拟的网络结构就是肌腱。如果华为能够与合适的在线和离线合作伙伴合作,肌肉和骨头的整合,更多地关注城市运营所需的应用技术创新,它也可以利用智慧城市完成企业形式的转变。
除此之外,最近还有一个新的巨头高调进入智慧城市领域。中国平安,作为一个主业为金融保险的公司,拥有22000个工程师及研发人员,远超于多数科技巨头;在智能认知、人工智能、区块链和云科技等科技领域已经建立了全球领先优势。中国平安是中国幸福、徐汇、碧桂园等房地产公司的第二大股东。它还与几乎所有一线开发商建立了股权合作,从而掌握了丰富的城市场景。资金、技术、场景俱全,可谓天生立于不败之地。
如果说未来有一个企业会在这个领域称霸,至少要同时具备上述其中两家的基因,而城市运营基因可能比IT更难获得技术基因。努力练习内功可以在一定程度上改善和实现转型,但基因的变化很容易伤害肌肉和骨骼。因此,在下一阶段,合纵连横的水平基本上决定了这些企业能的高度。虽然这些企业(国内)除了个别直接竞争对手外,几乎两者都有战略合作协议,但真正发挥彼此优势的深度合作尚未出现。未来最基本的模式是技术 场景的组合,所以我们看到了很多互联网 产生房地产战略合作。但由于房地产公司的视野大多局限于住宅和社区,对IT技术缺乏想象力,所有暂时还没有什么有趣的创新实践。
我在这里写了一个有趣的关键词,深圳。上述智慧城市市场一半以上的龙头玩家都来自这里,这应该不是巧合。深圳作为改革开放的前沿,在城市和产业转型发展的新时代,产业优势、制度优势和企业之间会有新的有趣反应。我相信这个城市应该是未来最接近的。
作为智慧城市的大方向,相信城市的全面数字化转型,甚至数据驱动运营,都有共识。但目前,我们仍处于数字城市的早期阶段,城市的规划、建设、运营和管理还没有真正实现数字化,更不用说智能化了。
昨天一位资深人士IT企业智慧城市前辈聊天时说:智慧城市系统的产品和服务在哪个层面?low,早点满足真正的要求。可以说是功能机和智能机的区别。现在几乎等同于原来PDA在手机时代,似乎有很多功能,但苹果一出生就知道差距大了。”
IT企业的思维,提升产品靠黑科技研发,更快的速度、更准的算法,但其实真正的代际提升,靠的是思维方式的转变。就好像我们发现苹果手机的灵魂,也许不是触屏和处理器,而是交互习惯和手机之外的应用商店。对于智慧城市来说,这个应用商店可能就是数据运营的机制,包括我们一直在做的决策支持平台和数据实验室,才是这个故事的真正重点。
以数据为线索,我们看到城市的规划、建设、运营、管理被重新组织成一个新的玩法。在互联网、物联网、人工智能等技术推动下,各种传统产业和城市管理被赋予新的逻辑。无论商业运营还是政府管理,数字化转型都不是把原有流程简单的转为线上,而是以更多互动、共享、弹性、精细的模式重新定义。这个过程中,每个环节都会产生大量的数据,如同传统产业中的能源一样,成为产业发展新的驱动力,并通过数据与上下游产业互相串联。
一个最常见的产业升级范式是,通过物联网、传感器等技术对传统的城市公共品进行改造,使其具备共享化的低成本运营能力,并可以在运营过程中获得持续收益,例如共享单车。这种运营驱动的逻辑要求企业具备产品和运营的双重能力,并可以在产品设计阶段就植入可运营的技术要素。在运营过程中,产品整个生命周期都会产生大量的数据流,人力驱动的管理方式变成数据驱动。一方面,可以优化产品运营本身,降低运营人力成本和综合成本,并通过人工智能使产品运维效率不断迭代提升,改善用户体验;另一方面,城市中各种产品和系统运维的数据,汇聚到城市数据平台中,彼此交叉和结合,又可以去帮助优化其他系统;而所有系统的数据,则全面描述了城市本身的运行,通过城市级的决策支持系统,实现城市的科学规划和精细化管理。总的来说,从传统的一次性售卖或者租用的盈利模式,转为两个盈利阶段,一段是产品运营收益,一段是数据运营收益,后者将会越来越大以至于最终超越前者。
共享单车是一个非常典型的产品:相对于传统的政府公共自行车,物联网使单个车辆可以实时在线,可精确定位,并接受控制;用户不需要拥有车辆的所有权,可以随时获得使用权,并可以通过定位服务找到车辆使用,用后在目的地附近合法地点自由归还;摩拜单车既是设备商也是运营商,通过我们共同开发的“魔方”人工智能大数据平台,摩拜运维人员可以智能化决策调度车辆的时空分布(类似的,如果是汽车,甚至可以自动驾驶完成调度);我们与摩拜组建了联合数据实验室,运用摩拜的运营数据,帮助多个城市进行了各种城市规划和运营的分析和优化,提出了包括步行系统、公交系统、街道设计、零售选址等系统的建议;在一些城市,我们还将摩拜的数据接入了城市的大数据平台,通过各种分析模型,形成城市级别的决策模型,对从宏观到微观的各种城市问题进行实时的问题分析和决策支持,实现精细化的城市治理。
另一个案例是我们参与研发的智能垃圾桶,其基本功能是垃圾深度的感知,可以在达到某些深度时自动进行压缩,提升垃圾桶的容量,减少维护工作量。在桶完全装满后,通过物联网通知平台申请维护操作。根据我们在清华大学布置的垃圾桶数据来看,从每天三次巡检,变成了十天左右的按需清理,大大降低了对清洁人员的需求,节约了人力成本。而更重要的是,垃圾清理变成了数据驱动的流程,这样我们就设计了一套基于无人驾驶的自动垃圾回收车,可以按照满桶信号规划线路每晚自动回收垃圾,使整个垃圾回收变成了完整的数据驱动的闭环。
对于传统互联网产业,C端和B端的逻辑往往比较简单。而对城市来说,多元主体复杂、价值观割裂。昂贵的硬件和软件投入最终对政府和城市运营商而言,产出应该是更高效低成本的治理,以及更多的运营阶段商业价值,但这不是软硬件能直接做到的。要使买单的政府管理者体验到数据的价值,而不仅是绚丽大屏的感官刺激,这不是单纯的软硬件产品研发环节能达到的高度。
综上,如何建立一个以数据为主线的产业生态,贯穿规划、建设、运营、管理全流程,拥有包括顶层设计、硬件、软件、数据运营在内的全面能力,是每一个有志于智慧城市运营的企业必须思考的问题。在技术上,整合数据产业生态可能有以下几个要点:
。哪怕是一个很小的领域和产品,其数据也会涉及到后面与其他城市数据的对接和融合。在智慧城市的顶层设计以及产品设计中,就应该充分考虑不同领域的协议、组网、数据模型、安全等标准,并在数据架构上做到充分的弹性可变。
目前市场上各种应用产品和方案很多,但很少有真正能做到贯穿始终的数据生态,尤其是系统所采集的数据价值,往往都被忽视和放弃。政府或大型企业应该牵头建立数据实验室或者类似的数据整合和应用平台,结合政府开放数据,盘活城市数据价值,有效对接数据的供需双方,在商业和政府治理领域开发更多应用。
目前既有的智慧城市盈利模式大都是政府投资驱动,偏重考虑投资和运营中的分工和成本承担模式,缺少各方获益的真正商业形态。但实际上,在各种产业的全流程中,都有潜在的运营和收益空间。这要求每个企业在数字化改造过程中应十分重视运营环节,摒弃传统的售卖或出租逻辑,尤其关注运营环节的数据,一方面帮助优化产品本身,一方面注意挖掘更广泛的商业价值以延伸产业链。
2018年,各行各业的日子都不太好过。互联网线上流量面临增量枯竭开始琢磨消费降级,开发商一边融不到钱一边盖好了房子被政策卡着脖子卖不出去,实体经济不好金融自然也好不到哪里去。三个昔日风光的行业如此,表面是运气不好撞见一群黑天鹅,其实也是经济周期使然,灰犀牛该来的总会来。更深层次来讲,中国的城镇化和工业化发展到今天,所有习惯的增长方式都接近极限,没有深层次的调整,中等收入陷阱没那么容易跳过去。
大城市的发展重点从增量转入存量,住宅需求放缓,开发商们越来越不被政府和银行待见。有中国特色的房地产行业一直是个很特殊的角色,产品和物业服务固然是个核心竞争力,但赚钱基本是靠资本和杠杆。拿不到融资的开发商,最后就只剩下产品能力,变成建设商,被背后的金融资本拿走大头。于是开发商们纷纷转型,大都宣布跟房地产业务各种切割,改名各种运营商各种服务商。简单说,就是卖不出去的房子长期持有收租子,无论是长租公寓、康养还是共享办公都是这个逻辑,那收益水平就算上了ABS和REITs也实现不了多高的周转;更高级的还有城市运营商,从招商引资到基础设施公共服务一概替政府解决。但是很明显,前者从卖到租的转变,短期利润必然会大幅降低,拿着以前卖白粉时可以忽略不计的融资成本和人力成本去卖白菜,痛苦可想而知;至于城市运营商,则很容易分不清企业和政府的边界,本不属于自己的钱也没那么好拿。
事实上,城市运营和管理的确可以是个不小的生意。在传统的模式下,城市的运营管理大都是需要大量人力财力投入的公共品,所以几乎都是政府在包办所有的事情。PPP普及以后,城市政府开始有越来越多的事情外包给企业来做,但政府和企业该如何分工,其实一直没有明确的边界。
运营,是对产品生产和服务创造的全过程进行计划、组织、实施和控制,本来是一种企业经营行为。物业出租和管理这种工作,原本就是成熟的市场化领域,不是我们讨论的重点。城市公共领域中很多工作,也会倾向于逐渐由企业主体去承担,尤其是其中可以真正实现市场化运作并盈利,或者起码是能自给自足维持的部分。政府的角色,会逐渐转向真正意义上纯粹的“管理”角色,主要完成规则制定、底线审查、标准检验等工作。传统的城市运营,为了维持基础设施和公共服务的高效运转,主要依靠人力投入完成,成本高而效率低,比如市容环卫、公共交通等领域;城市管理也同样如此,即使是现在流行的所谓数字化城管或者网格化管理,看起来是信息化的外壳,但本质上还是密集的人力投入实现的管理颗粒度提升,就连满街的摄像头,大多数也是靠人盯着看,或者仅仅是用于事后追溯。运营和管理两件事得以真正区分和实现,一个很重要的前提就是数据。
随着ICT技术尤其是物联网的发展,城市的基础设施体系逐渐完成数字化改造之后,实现万物互联、实时在线、可感可控,其中很多也就具备了无人值守自主运营的能力。比如无桩共享单车对政府运营的有桩自行车以及私人自行车的取代,又如智能垃圾桶实现自动压缩和容量感知之后,大大降低了巡查维护的人工需求,而其关联的无人驾驶环卫车辆甚至可以把街道清扫和垃圾桶倾倒变成完全无需人力、数据驱动完成的闭环,从而在改善了用户体验的同时也大大降低了运营成本。久而久之,整个城市会逐渐变成一个巨大的ICT产品,可以数据的逻辑驱动其运转。
城市运营的全程数字化,带来的除了本身的系统优化以外,也为精细化的城市管理提供了可能性。各种城市基础设施和公共服务的数据实现全面的汇聚之后,政府无需大量的巡查人员和行政程序,就可以对所有的城市事件和基础设施部件进行实时监管,并通过算法对异常事件识别和预警,实现基于规则的数字化管理。例如共享单车行业的两个痛点,总量控制和空间调度其实都并不难解决,但目前大多数厂商的人海战术型运维加上政府的虚张声势型监管才造成了如今的困局。如果能实现全部厂商数据的统一数据平台接入,或者每车一个统一的电子标签和编码,就可以实现全城范围所有品牌车辆的定位监管,对厂商的运营要求才能真正落实。
在这样一个城市设施和服务普遍物联化的大趋势下,逐渐浮现出了一个巨大的产业风口:开发商、物业公司等传统的有城市运营基因的企业,以及掌握线上流量和物联网平台的ICT和互联网公司,都会全力争夺越来越多的实体空间运营权,作为未来的流量入口。在近期,就是控制智能家居、新零售、出行等新的空间场景,尤其是其数据采集能力,为人工智能储备资源;大量数据会逐渐释放其商业价值,数据运营会成为城市运营商的一种重要商业模式;最终,数据驱动的城市运营也许会催生一类新的巨头:万物运营商。这些公司会通过物联网低成本运营城市里的各种设施和服务,小到单车、路灯、垃圾桶,大到厕所和各种功能空间,直至控制整个城市机器,一方面可以获取持续的服务费用,一方面,海量数据也会在商业领域和政府管理领域获得更大的变现能力。
在写前面两篇文章的时候,其实我对这件事情的思路还并不十分清晰。在分析产业生态智能化改造的范式,以及万物运营商的呈现逻辑的时候,都提到了城市智能化改造之后对政府治理模式的改变。在规划、建设、运营、管理这个完整的城市发展逻辑里,运营和管理两个环节发生了越来越多的变化和互动,会逐渐分化成两个与传统迥异的新模式,也许是智能化给城市带来的最重要变化。
早期的智慧城市市场的主流业务,一方面在做政务管理流程的数字化和互联网化改造,一方面在帮助市政和基础设施部门做城市的运营数字化改造,所以有了智慧政务、智慧城管、智慧交通、智慧市政、智慧公安、智慧环卫这些与政府当前的事权划分和管理条线相匹配的业务系统,但其中涉及基础设施的业务系统大都包含了运营和管理双重职能,因为大多数城市基础设施和生命线系统还是由政府在亲自操盘。政府不得不做这些脏活累活的一个潜在原因是,这些工作不但难以盈利,而且由于其运营动态工作量和效果难以量化评估,所以无法交由企业去运营和补贴。
随着物联网和人工智能技术的深入发展,这两年智慧城市也进入了新的发展时期。越来越多的城市场景在物联网改造之后,具备了自主运营甚至商业化运营的能力。共享单车、无人驾驶公交车、智能垃圾桶、智能环卫车辆、智能路灯等城市智能硬件从局部的产品创新开始,逐渐在改变着整个基础设施和公共服务体系的运营模式。这两年我们团队和相数科技一起合作完成了多个互联网企业的大数据运营平台,其共同特点都是运用大数据和人工智能技术,依托基于地理信息的数据可视化平台,帮助企业去动态调度各种城市设施和服务资源。虽然其中还是有很多人为的因素,但可以看到数据驱动已经成为城市设施和服务运营的新趋势。
上图是我们帮助摩拜单车开发的可视化运营系统魔方平台。通过位置、轨迹等实时数据,基于地理网格动态管理千万辆共享单车的运营,基于人工智能算法实现车辆调度的辅助决策。
我们完成的类似出行平台还包括电斑马(大于出行)的共享电动自行车和充电桩运营平台、蕃茄出行的共享汽车运营平台等。
业务逻辑更为复杂的系统还包括停简单的智慧停车场运营平台和点我达的快递外卖管理平台。停简单平台除了基本的车位、车辆、收费等管理外,还可以根据车场饱和度和需求进行人工智能定价策略优化、错峰停车引导等,还可以对接政府平台需求,对失信车辆进行预警、报警,并对其来源等信息进行分析。点我达平台则除了基本的外卖订单、骑手、轨迹管理外,还有智能优化派单和路线等运营功能。
这些平台与传统可视化平台的共同区别是,海量的物联网设备和巨大的交易量,需要底层强大的实时数据汇聚处理和分析计算能力,前端除了解决大量并发数据的可视化以外,复杂的业务逻辑也对交互设计提出了很高的要求。类似平台支持的基于物联网和互联网的基础设施和公共服务乃至商业服务,将成为未来城市运营的主流模式。
说了运营,下一篇再说说智慧城市的管理平台。
上次说到智慧城市演进的两个主要方向,运营与管理。之前也专门说过万物运营商和各种城市运营数据平台。这篇要讲的是,在越来越多的城市系统被IOT和人工智能运营技术改造以后,政府主导的城市管理将带来的一些变化,其重要的特征就是城市数据平台的演进。
说到数据平台或者信息化平台,政府一直是很喜欢的,当然最喜欢的还是那块大屏幕。当年的第一代城市数据平台就很酷炫。那个时代最厉害的平台一定是规划局的,真三维的数字城市,建筑立面上的贴图可以乱真,各种静态统计信息和图表的可视化,甚至还有规划、建设、管理等规划行业管理功能,控规城市设计甚至建筑设计都能进行方案比较和空间分析。但其数据大都是来自统计部门,最多加上点各部门的汇总数据图表。
我们所说的城市管理,也可以叫做城市治理,显然不是当下的狭义“城管”概念,甚至不仅是政府各行政主管部门做的事情,还包括往往被忽视的城市的主官,也就是书记市长们,如何协调整个城市系统和各个部门的健康运行。但第一代的所谓城市数据平台,都只是低维的部门平台而已。
以前哪怕是北上广的市长们,其实几乎没有渠道了解整个城市系统的运行状态。一个千头万绪靠人力管理的城市,每天凭借有限的口头和文字汇报,各委办局的报喜不报忧,使领导常处于一种焦虑状态。所有的高维决策都只能靠经验和感觉,拍脑袋必然是唯一的方式。
前几年我们团队给某一线城市市委办公厅做了几年大数据决策参考,也就是每隔几周在市委书记每天早晨阅读的材料里加上一份城市运行和城市问题的分析报告。从一开始网上抓取可怜的数据,到和BAT等互联网公司全面合作;从我们揣摩需求自主研究,到领导主动点题提出需要剖析的问题。我们逐渐摸索了一套用大数据分析解决城市问题的方法。而且这其中收获很大的是,我们在市领导不断的需求引导下,关注点从城市规划建设,逐渐扩展到了城市治理的所有领域,包括环保、交通、城管、应急、舆情、产业、文化、人口等方方面面。市领导也终于对城市获得了前所未有的掌控感觉,可以体验到第三方多维数据对传统城市统计数据的强大扩展。比如一次十一黄金周之后,我们提交了一份多维度的大数据城市运行报告,从此每个黄金周领导都会主动要求这样一份报告,数据源也是越来越丰富和立体。
经过对市领导需求和数据资源的不断沉淀,我们完成了第二代城市数据平台,或者说城市体检平台的产品原型cityeye,城市管理者终于象现代医学一样获得了随时依靠大数据进行X光和CT的能力。智慧城市行业也开始在各地部署所谓的城市大数据平台。这一代平台的特点是,不但开始汇聚政府各部门的完整数据,也开始整合政府以外的互联网大数据资源。这个时代的很多部门平台甚至开始有实时大数据的动态呈现,甚至跨部门系统的实时互操作,比如阿里的城市(交通)大脑,就是典型的第二代城市大数据平台。打通摄像头和红绿灯,还有信号灯配时,显然不是个多难的技术问题,但能做到这一点,对政府的数据协调能力确实是不小的挑战。
城市体检平台cityeye
第二代城市数据平台和IOC:阿里城市大脑
最近两年,互联网数据源的不断拓展,政府数据的持续汇聚,可供决策支持调用的数据丰富程度远非当年可比,但很多城市运行的实时数据仍然由于技术和体制等原因难以获取。因此我们团队也在持续进行城市智能硬件的研发,尤其是以建立低成本高密度全业务的城市感知网为目标的各种集成城市传感器。如今,我们的设备已经具备了对环境、气象、积水、噪声、人车行为,以及污染物排放和传递、违法施工等各种复杂城市事件的全面感知的能力,并在多个城市高密度部署,建立了基于物联网的持续数据采集能力。
集成城市数据传感器citygridG3
与此同时,随着前文所说的城市运营模式的演进和PPP的发展,很多政府部门的城市运营职能逐渐弱化,剩下的管理职能则倾向于跨部门融合。城市政府的组织架构也陆续发生了一些变化:一些跨行业的高维机构出现,最典型的是从规划国土等多规合一到自然资源管理部门的整合;融合规划、城管、环卫、环保、市政市容等传统部门业务的大城管部门逐渐出现;各种城市生命线的应急能力被抽离整合成为了专门的应急管理部门;大数据局等数据主管部门出现,开始自上而下统筹智慧城市建设的设施和数据。这些高维部门直接对应的就是政府的规则设定、底线监管等职能,而这些职能的行使,一个重要的前提就是整个城市生命周期的数字化。这也是十九大以来中央对“数字中国”概念不断强化的一个重要动力。
在这两个趋势的推动下,我们团队和相数科技一起研发了第三代城市大数据平台——城市领导驾驶舱。其核心能力是各部门各场景海量实时数据的接入,尤其是大量新兴的基础设施运行物联网数据,通过专门的人工智能算法进行降维处理,通过一系列功能模块满足各级城市管理的需求。把巨大庞杂的多维数据按照不同的事务而非部门事权去抽取和建模,形成更符合高维城市治理的新型平台。物联网大数据和人工智能的结合,也符合ICT技术发展的AIOT趋势。
在市领导的思维模型中,部门的条块分割虽然是国家机器运转的必然结构,但也是城市事务处理的天然障碍。同一个突发事件,比如交通事故或者地质灾害,在不同部门的系统里会有不同维度的表达和信息,但以往的方式通常是没有能力将这些信息快速综合提供研判决策支持的。而人工智能通过大量历史数据的学习和抽象,加上专家系统的逻辑综合,是可以以事件和事务为线索重新呈现各种城市问题和事件的因果关系和相关性。城市作为一个复杂系统,可以通过这种方式,帮助决策者快速识别和处理关键环节,从而大幅提升城市管理的效率和科学性。
数字孪生概念近两年在智慧城市领域出镜率很高。这个来自于工业领域的概念虽然名字有趣,但其实并没有什么太新的内涵,无非是在数字空间再造实体空间的镜像。对于建筑、规划、地理学科来说,本来我们也要对城市空间三维建模,也就是制作之前所说的数字城市。我们本来就有的CIM(城市信息模型)概念其实基本上与数字孪生就是同义词。
当然,除了描述三维空间信息的GIS和BIM,物联网使万物互联和实时感知成为可能,我们可以实现更多城市运行数据的采集,所有的人、物、流都可以在数字空间里获得数据同步。这样看来,其实我们前几年一直聊的城市大数据,就是在试图用各种数据,尽可能还原一个完整的城市运行状态。除了政府数据、传统的空间数据、互联网数据以外,一个新的城市感知网已经呼之欲出。目前的摄像头、环境监测设备,固然能采集很多的实时数据,但离完整呈现城市运行状态,满足精细化管理的需求,还相去甚远。
谈到数字孪生,大家经常会关注逼格很高的部分,比如像一个沙盒系统可以模拟推演,什么人工智能可以决策判断,甚至还能如Matrix或头号玩家生活在虚拟世界。作为终极目标,这些没毛病,但现阶段聊这些,只能说想多了。
所谓人工智能的逻辑,无论什么机器学习还是神经网络,都先要学习大量历史数据,而我们其实根本没有足够的多维数据去训练城市运行的AI,充其量模拟某些简单系统的运行,勉强整个红绿灯配时。
图:数字孪生城市的四个阶段
所以说,其实实现数字孪生的关键就是定义全域感知的新技术产品,这不是某一个单品,而是一个产品体系,而且必然随着传感器、5G和边缘计算技术的发展不断迭代。高密度部署、高精度感知、实时结构化计算回传,类似无人驾驶高精地图。实时更新的全息城市信息模型除了空间信息,还可以叠加无数个数据维度。一砖一瓦、一草一木、一桌一椅、一人一车,都会以不同的频率更新位置和状态信息,真的“全息”,数据量和带宽需求都是我们现在无法想象的,但又会是5G时代的常态。当然,“全息”无疑是永无止境的目标,也许是下一个IT领域追求的类似摩尔定律的新周期。
记得当年帮摩拜做魔方平台的时候,访遍了国内的大数据和可视化公司,就没有一家能承载如此海量的实时数据,还要做复杂的计算和可视化,幸好相数的技术解决了这个难题,后来停简单、点我达这些城市服务运营商的出现,也出现了越来越多的物联网大数据平台场景需求,而至今仍然罕有另外的企业能够应对。从这个角度说,所谓现状孪生这第一个阶段尚且还是个概念罢了。
图:制造领域的数字孪生模型图解
(来源:Delotte University Press)
摩拜魔方
“啊~啊~啊~5~G,你比4G多一~G”,仅此而已?
跟之前几篇比较抽象的文章相比,这篇的主题好像是有点硬。5G作为目前最为热门的ICT技术概念,连菊厂自己都认为尚无真正的应用场景,而这其实并非设备商应该解决的,而是需要各行各业立足自身行业未来形态有所预判。所以感觉最近很多行业都在思考其与自身的关系,其中就包括一些开发商朋友,还有城市规划的小伙伴们。
联想到前面几代无线通信技术的升级,虽然速度快了成百上千倍,传输内容从语音到短信、长文本、图片、视频、直播,催生了移动互联网,尤其是微博微信等社交应用、还有快手抖音各大视频APP、淘宝京东拼多多,但似乎对城市形态和城市领域的传统行业并没有带来什么变化。当然,我们周围是多了些生鲜电商实体店,倒闭了一些百货商场,但也仅此而已?
为什么大家对5G有着不同以往的期待?也许是因为这次升级看起来将要达到一些大家向往已久的临界点,会引发一系列质变,当然也会带来无穷的新商机,对城市的规划、建设、运营和管理的影响更会十分巨大。
就技术来说,5G几乎满足了关于无线通讯的一切想象,无线通讯的技术进步,无非围绕频率、带宽、功率和信噪比的一系列数学关系的优化,5G之所以和以往的升级不同,就是这次的频谱效率基本达到了香农定理的极限,如果没有基础理论的革命,这次升级基本是这一轮的最后一次了。所谓6G,大家通常寄希望在太赫兹频段,目前还只能是个概念。
香农定理(知乎甜草莓)
毫米波通信是5G的最核心技术特点,毫米波波束窄,方向性好。Small cell、大规模MIMO等基站和天线技术也是服务于毫米波这个前提的。这些对城市空间最直接的影响就是,由于微站的发射功率低,服务半径小,穿透性差,传输损耗大,基本是视距传输,需要在城市中非常。近两年智能路灯杆产品和商业模式的出现,基本都是在为5G基站的落地做准备。灯杆作为城市中最为密集的基础设施,又有了供电和宽带连接保障,必然会成为城市物联网的最重要载体,尤其是采集视频乃至3维数据流、声音、污染物、气象等城市运行状态的多种传感器,充分融合后可以实现全息的网格化城市状态和事件感知。而这些载体和数据未来也会是自动驾驶车路通讯的重要议题。
作为一个副产品,高密度的基站布局和精确的定向能力,会带来手机信令数据价值的一次飞跃。定位精度会提高一个数量级,跟现在的GPS数据不相上下,达到亚米乃至厘米级。更重要的是,可以实现室内外一体化的高精定位。信令数据会成为描述人的位置和行为的最为整齐精确的数据源,取代绝大多数定位和计数工具,为精细化的城市规划和治理提供支持。当然,手机这种产品形态应该在五年左右会被取代,但应该会化身到更多的物联网产品尤其是可穿戴设备之中发挥类似的作用。
就具体指标来说,下载速率理论值每秒10GB,是4G的十倍;理论时延1ms,是4G的几十分之一;单通信小区物联网终端数量理论值达到百万级别,是4G的十倍以上。
1ms量级其实已经低于神经系统的传递时延,所以主要应用于需要超高精度或者较高移动速度的场景,最为典型的就是自动驾驶。尤其是作为L5过渡状态的编队驾驶和远程驾驶。在高速行驶情况下,毫秒级的刹车时延对应的就是厘米级的刹车距离。从单车自主控制,到V2V和V2X的大系统,通讯技术可以释放大量车端的感知和计算压力,最重要的好处无疑是安全性。而无人驾驶安全性的提高直至L5最终普及,给城市带来的变化应该是5G时代里最大的。本文不重点展开这部分,毕竟Sidewalk的整个城市尺度空间变革的故事几乎都是基于无人驾驶的,包括空间距离的敏感性降低、出行途中与固定场所的区别部分消解、小汽车无需私有、共享出行和公共交通融合、城市用地性质高度混合、TOD模式的消解、路面资源需求降低、停车场需求大幅降低……总的来说,无人驾驶带来的是城市的交通功能和其他功能的融合,车辆和各种广义无人驾驶载具会变成移动的城市功能空间。雅典宪章以来城市功能分区的概念会在各个尺度上发生消解,虽然不一定是彻底颠覆。城市功能空间无论大小,彼此之间信息的互通和通过道路交通完成实体空间的连接会呈现一种新的关系,其实就是数字孪生空间与实体空间的几种新的互动方式,暂时还没有合适的理论探讨。
此外,5G可以提供一些精密操作场景的远程化。另外一个典型应用场景是远程医疗。结合触觉机器人,可以实现远程B超和内窥镜等诊断,甚至远程手术,帮助非城市化或落后地区实现医疗水平的均衡和医疗成本的降低。类似的,从工业角度来说,一些高精度操作工作也可以引入远程协作机制甚至远程就业,也许这些未来只是远离城市的无人工厂的补充而已。
应用的典型应用是VR、AR和超高清视频,大家通常会考虑其娱乐应用。在我看来,重点是5G支持的带宽大概可以解决一些视频时代还不能解决的面对面交流问题。以前我们以为通信、语音甚至视频可以一定程度上消解空间距离,甚至可以实现远程交流取代面对面。直至5G时代,真正全息的VR技术才能一定程度上实现这个目标。除了语音和面孔,细微的表情动作都可以被捕捉,感受到“气场”层面的信息,甚至还包括气味、微环境、触觉等影响交流真实感的因素。可以预见,当与岛国老师们沉浸式的交流需求先得到完美满足以后,其他的场景应该都问题不大了。说到老师这事,流水线式的传统K12教育在AI和5G的辅助下,是不是也能真正实现远程互动和因材施教呢?
主要应用在物联网领域。未来城市中,万物互联会超出我们目前的想象,不仅是智能家居和交通工具这些应用。最后一公里的光纤网络甚至基本的弱电布线都可能被5G直连取代,目前各种连接方式的智能家居设备可能都会变成扁平的结构,会对目前的市场格局产生不小的影响。工程建设可以摆脱一些线缆的限制,这一点会节约不少成本,但实际对设计的影响会有多大还需要观察。最近参与的一些智慧公园项目中这个感受尤为明显,后面可能会专门撰文。
2G时代和NB-IoT早期不靠谱的物联网连接状况将成为历史,无论是NB-IoT还是Lora或者另外的低功耗广域网协议取胜或者分庭抗礼,都会给我们带来更稳定可靠的物联网体验,当然这一点是之前深受其害者才会有的感到区别。
随着MEMS等传感器技术的发展,所有城市基础设施甚至建筑构件都会接入物联网,并实时更新状态,最终实现数据驱动的控制运营。与低时延特征结合,AI边缘计算也会与物联网融合,解决基本的AI分析能力,减轻云端和传输层没有必要的负担,真正实现AIOT。例如未来无缝覆盖的智能摄像头,其采集的高清视频会在本地完成包括人脸在内的各种基本内容识别和结构化处理,可以按需调用甚至分布式检索,结合其他传感能力,共同构建真正高频刷新的数字孪生城市。
5G无疑会象电力、蒸汽机一样使我们的城市发生巨大的变化。作为城市规划师,我们有幸身处一个即将变革的时代,可能会创造新的城市理论范式。但目前凭我们的想象力,似乎并不能预测未来城市形态的变化。上文并未有什么实质性的新知,充其量算是整理一下思路。已经提到了工业、交通、医疗、教育这些决定城市中心性的最强功能要素的改变,加上早就发生的零售业,虽然导致的空间形态改变似乎也就是使城市功能进一步分散和混合,甚至原子化,大尺度来讲也许指向区域化网络化,但叠加在一起的效果就无法想象了。
而且这次城市革命更大的改变,也许主要不是形态上的,而是规划、建设、运营、管理的逻辑本身。5G也不是一个独立的技术,而是和其他ICT乃至材料和生物等技术一起,呈现一个全息感知、数据驱动的城市,可以更好地通过人工智能适应和满足市民的需求,自主学习,自我完善。城市规划师,也不需要绞尽脑汁想象一个与以往不同的科幻场景,而是需要更多思考如何利用新的技术和数据去渐进优化我们的存量城市空间,学会在外科手术和望闻问切的技能之外,转变成循证医学乃至精准医学的专家。智慧城市也需要更多理解ICT技术的建筑师和城市规划师,作为智能场景规划师,创造更丰富得体的技术应用场景。
最近有了一个新的岗位,智慧城市场景规划专家。似乎全世界还没有类似的专业和岗位,这几天也免在思考,这件事情的核心技术和解决的问题是什么。
智慧城市圈子里的同学们应该都有感觉,以城市大脑为代表,去年以来这个领域又重新火了起来。5G、人工智能、物联网、无人驾驶这些新技术概念让这个一直沉浸在电子政务、摄像头和IOC大屏的领域有了更大的想象空间。Sidewalk的未来城市愿景虽然一直停留在ppt上,但美好的效果图还是让大家兴奋和憧憬不已。这几个月接触的项目中,从开发商的小镇和园区,到城市新区,还有国家战略的千年新城,无不提出建设智慧城市乃至未来城市,但都面临一个问题,如何去规划建设一个属于未来的城市。
本来这个问题很简单,因为城市规划天生就是面向未来的,能绘到底的一张蓝图本来就是这个行业的本分。但是传统的空间美学主导的城市设计,以及法定体系主导的功能分区,已经使这个行业的想象力逐渐枯竭。在产业革命带来的新一轮城市革命之前,并没有做好相应的理论准备,以至于无法适应新一轮的空间规划需求。我们的学校教育和职业培养体系,都缺失了数据科学的基本培训,更不用说对ICT技术的敏感性。很少有规划师能回答新一代信息基础设施与城市空间的一系列关系。规划项目中也经常会煞有介事地规划智慧城市专题,但往往会止步于wifi覆盖,更可笑的是经常会把数据中心堂而皇之的摆在城市中心以示其重要性。新一代信息基础设施对于城市的改变不会亚于小汽车,而想想我们现在的规划规范有多少逻辑来自于小汽车,就知道我们的规划行业需要补多少课。
当然这几年流行的智慧城市顶层设计貌似也是回答这个问题的。但ICT公司们的目标只是把自己的成熟产品卖给政府,所以他们所谓的顶层设计只能是系统架构设计的马甲。哪怕你是千年大计,互联网公司有的也就只是现成的云网终端,电网、铁塔公司、电信设备和运营商,能摆的也就是充电桩和基站。当然,无论谁做总包,都会找很多的ISV小伙伴去集成各种各样的软硬件产品,从摄像头到红绿灯,从灯杆到垃圾桶,都可以从市场上采购,大不了再放几辆无人驾驶汽车转悠。但这样真的能建设出未来么?
综合来看,目前市面上的智慧城市和未来城市需求有两类,两种模式虽然看起来都是综合运用各种ICT技术去升级城市基础设施和运营体系以及城市管理模式,但方法论的区别不小。
无论是政府的信息化,还是开发商的示范项目,大多是用成熟技术解决当下问题的。理论上,ICT企业脱胎于软件工程的需求分析和响应方法论是可以应对的。但是,软件工程的前提是需求明确,而传统部门用户提出来的只能是基于传统的规范和模式的业务需求,直接用新技术去响应这些需求,结果就是换汤不换药。我们见到的大多数智慧城市产品都是如此,只是把一部分以前由人来完成的工作交给机器,并未帮助传统部门实现新的运营或者管理模式。所以这类需求一定要基于对业务本质的高度理解,帮助用户重新定义目标的可行实现路径,通常采用小规模渐进式的自下而上研发实现。
而面向未来的模式就更加难以实现。没有现实的需求和成熟的产品,却需要向iphone一样洞察技术的趋势和人性的偏好,重新定义整个城市在新技术作用下的新的生产生活模式。只有极少数的大公司和大城市有这样洞察未来的雄心和能力,因为只有这样才能成为引领者而非跟随者。未来其实是有多种实现路径和可能的,绝大多数场景不存在唯一的技术解决方案,不是科学家能在实验室决定的,而需要在真实的城市场景里试错、迭代和完善,最终成为共识。比如新能源汽车的方案,就技术来讲氢和电显然是各有优势,但谁先落地并获得大量的用户,可能就是决定性的胜利。这才是我们为什么要建设未来城市的示范区,不是一个盆景,而是新的技术和标准的孵化器,各种新产品在真正的城市场景里磨合和完善,同时也需要创新企业现场研发和完善产品,通过对所有城市系统的流程再造,形成从产品研发、落地,到收集和分析用户数据,完善和迭代产品的闭环,自然也会形成一个基于创新的产业生态。这类需求其实也是自上而下的顶层设计的真正意义所在,需要由政府或大型企业(联盟)去抉择和定义整个城市的演进方向和关键技术方案,通过大规模产业协作自上而下完成研发组织过程。
这两类需求都需要有真正意义上的智慧场景规划能力去响应。
“场景”规划是一个很抽象和综合的概念,我理解为对城市的空间容器里各种要素的统筹安排,城市规划侧重其实体空间要素,新芝加哥学派的场景理论对城市空间和社会空间已经有全面的研究,而智慧城市则需要综合考虑空间要素和ICT技术要素。智慧城市场景设计可以类比电影和游戏的场景设计,从故事线到世界观,从镜头语言到灯光道具,需要从整个系统的运行逻辑去综合分析。场景设计有几个关键的环节或者说技术要求,也许可以作为有志于这个方向的小朋友们参考。
大家都知道一句话,城市是开放复杂巨系统,但这究竟意味着什么呢?城市要素之间复杂的关联和互动,牵一发而动全身,以至于往往无法用还原论思维简化。跟城市规划类似,解决复杂问题需要关注事物的关联性和动态性,把城市里的各个系统、各个部门综合起来考虑。目前的智慧城市系统绝大多数是垂直部门建设的,形成一个一个的数据烟囱。但其实各种数据可以服务的都不仅是一个系统,这就导致了大量的重复建设尤其是重复的数据采集。各系统之间的共性需求没有统一的动力,共享和汇聚的困难会在各个环节体现,尤其是市级的统筹,往往面对千头万绪无从下手。比如我们研发城市数据融合传感器,就要梳理环保、城管、交通、公安等各个系统的感知需求,归并指标和空间部署的共性因素,并探讨每种数据对其他系统的可能价值,以创造创新的行业应用。另外,复杂系统自组织和涌现等特征,使个体之和远大于整体,所以非线性思维是重要的素质。
革命性的技术对空间都会有摧毁和重塑的力量,铁路、电力、汽车和电梯都是类似可以改变城市形态的技术。即将出现的L4L5级自动驾驶和5G等都可能会成为类似的革命性技术。参考上一篇对5G城市场景的推演,我们需要能超脱于技术本身,理解识别城市中可变的和不变的要素,从技术史的视角去观察技术对各种城市要素可能带来的改变,进而推演随之而来的空间变革。比如对无人驾驶和共享出行主导的城市进行前瞻,就不能仍然机械地按照此时的规范配置停车位,至少要考虑到未来车道变窄且停车需求降低空间富余之后的弹性改造方式。而如果还用私家拥车而非共享的逻辑去测算无人驾驶汽车的需求量,那就会是个比交通拥堵更大的灾难。所以逻辑推演的更长远愿景将是公交系统变革和用地组织方式的变化等。这也体现了第一条的复杂性,即每个变量的变化带来的都会是一系列连锁反应。
智慧城市项目自然离不开ICT技术的综合应用,而创新应用、尤其是着眼长远的流程再造项目,往往需要用到非常多的跨领域技术,甚至黑科技进行创新研发,这对任何领域背景人员都是巨大的挑战。云计算、物联网、传感器这几个常规技术对IT公司来说可能问题不大,但涉及到复杂无线需求,就只有菊厂有足够CT能力搞定。但更多的场景中,涉及到更全面的材料、工控、能源,甚至生化领域的技术,即使每种技术都未必多复杂,但综合起来就成了不可能完成的任务。比如对排水管网内部堵、漏的监测,几乎只有井下机器人一种办法,但市场上的产品形态大都还很初级,要不就是个球不知道被冲到哪里去,要不就是只能拖着几十米电线一个井一个井抽干了水放下去靠视频检查一小段,每公里综合成本上万。当然,现在已经有了视频、激光雷达、声纳一体的三维形态感知能力,也有了履带、蛇形、腹壁等行进方式,也有携带电池的长续航能力。但可不间断自主工作,可从污水中供电,可穿透数米土层与地面通讯和定位,可处理复杂粘稠油污沾染腐蚀,可放置无源定位标签和MEMS传感器等需求其实在技术上都并非难事。但因为涉及技术领域过于宽泛,对研发团队的综合要求高,导致一直没有理想的产品出现。在城市基础设施改造领域,这类价值巨大的市场需求俯拾皆是,但通常被熟视无睹。
四是问题导向的综合场景的构建能力。
我理解的城市规划本质是统筹各种资源解决城市问题,ICT技术当然和空间手段一样理应成为解决问题的工具。现在的各种所谓智慧城市示范项目,往往是把各种所谓的高科技产品摆在一起,却并未真正考虑场景的需求,就连雄安市民中心和海淀公园也不例外。例如园区的无人驾驶产品已经成熟,但通常会被扔到路上作为个游乐项目,在我们的方案中,则会作为智能垃圾桶的搭档成为智能定义路线的垃圾回收载具,或者解决特定短途交通问题的工具等。在某软件园的改造方案征集中,园内外的顶尖厂商提出的都是各自的成熟产品和解决方案,而我们则重点针对其园内外的主要交通问题,提出了结合景观设计的慢行系统再造、园外停车场改造升级和包括无人驾驶在内的多层次接驳体系建立,以及与接驳系统结合的统一访客管理系统,共享交通精细化管理等策略,有效改善园区痛点。
无论智能化还是信息化,基础都是数字化。用数据重新描述和解释城市,是智慧城市的第一步,也是贯穿整个城市生命周期的主题。数据是智能的前提,没有作为训练样本的海量数据的采集,就没有对各种城市系统规律的识别,更谈不到预测和调控;数据是场景的线索,各种应用和产品之间靠数据交换建立有机的联系,丰富的互操作来自于充分的跨系统数据打通;数据是产业的动力,开放共享而又保护隐私的健全的数据生态,是智慧城市创新创业氛围形成的的重要前提。
数据的主要来源,会从描述人的互联网到描述设施的物联网。从各种独立传感器到一体化的城市传感网,从传统设施被动感知到数字化设施主动上传数据,这个改变的过程也是我们改造物理世界的基本逻辑。最终在数字空间里呈现一个全息的数字孪生城市,甚至把主要的生活场景从实体空间迁至其中。
这一点最为抽象。智慧城市项目,无论是2G还是2B,大多数最终都是服务市民的。我们认为,以市民为核心,多元主体的全面参与是项目成功的基本保障。在空间规划时代,我们有环境行为学和人体工程学的工具。但在数字化场景中,人的主观体验和获得感、幸福感的量化描述和评价并没有相应的方法论。我们看到的很多尴尬的产品都是工程师的一厢情愿,最有代表性的就是很多主流智能家居产品的设计,蹩脚的产品和交互设计使本来的举手之劳变得繁琐和无趣。在B端和G端的类似的画蛇添足应用也是不少,比如现在大杂烩式的智能灯杆,把各种简单的ICT功能模块各自挂在同一个杆上,就号称智能,却没有一个真正把一体化采集城市数据训练城市智能作为诉求。也许通过数据解决交通问题并不是直接2C,但可能比一个路灯上的手机充电器更能解决市民的实际问题。
智慧城市本质上是指新一代的城市支撑技术体系,而从技术属性去定义城市的关键在于新的基础设施体系,这是支持所有城市规模形态和运营管理模式的根本。但由于大多数是隐蔽工程,投资巨大但又不容易直接看到,所以很容易被忽略。城市的水电气热管网和能源供给方式,加上固废处理方法,是整个工业时代的技术产物,基本方式也许已经稳定,但其效率和安全、节能、环保等特性,还有巨大的提升空间,而基本方法就是依靠ICT和材料、化学、生物、能源等新技术去改造现有系统,以支撑更加可持续发展的城市形态。
时至今日,地面上的城市光鲜亮丽,却很少有哪个城市能搞清楚自己地下埋着多少管线,有多少正在不断跑冒滴漏污染着土壤和地下水,甚至爆裂乃至爆炸的风险潜伏。综合管廊当然是靠钱解决问题的好办法,但事实上大量存量城市基础设施还需要更为务实的方式去改进。
物联网时代的万物互联,重点并非是家里的电灯电视,而是整个城市基础设施体系的实时在线可控。所有地下管线都将变成新的ICT设备,自身具备神经系统,获得感知和数据传输能力,使城市运行更加安全高效和韧性。这个地上地下一体化的感知和控制网络,其精度和覆盖会远超过现在的想象。从人为巡检、经验操作演进为靠人工智能控制的新城市生命线,对未来的5G网络来说也会是非常主要的应用场景。最近不得不重新回忆在学校上过的一点基础设施课程,和当年