资讯详情

STM32 SPI获取磁性角度传感器AS5048A角度数据

STM32 SPI获取磁角传感器AS5048A角度数据

AS5048A采用14位精度磁角检测传感器SPI接口。事实上,稳定精度只有12位,即数据输出的最后两位在检测环境静止时发生变化而不恒定。AS5048A可用于旋转角度检测,如旋转编码器,特别是云台角度检测等Z轴旋转检测。

以下是官方模块: 在这里插入图片描述 因为AS5048A可以通过SPI也可以通过PWM线输出角度数据,第三方模块单独输出PWM还有单独输出的类型SPI这里只介绍一下SPI角度输出模式。

检测原理

磁角传感器的角度检测原理如下,需要半圆磁极的磁片配合,磁片旋转时,AS5048A检测磁线的变化,获取角度信息。 AS5048A它是一个360度检测传感器,用户可以设置0角位置。其优点是直接输出角度,不需要转换角速度到角度,测试验证长无零漂移。

SPI协议

AS5048A采用16位的SPI设置操作地址的命令发送格式如下: 写数据格式如下: 读取的数据格式如下: AS5048A内部寄存器的功能如下:

读角操作模式

读取角度的操作方法可根据时序要求进行:

  1. 清除错误的寄存器指令
  2. 空操作指令
  3. 读角度指令
  4. 空操作指令 所以会发送4次SPI在最后一个空操作指令周期中收到的数据包含角度数据,因为指令采用全双工发收方式。

角度数据处理

角度数据有两种处理方法:

  1. 设置零点位置,然后直接使用读取的角度数据
  2. 零点位置不设置,STM32芯片上电时,先读取当前位置数据作为零点,然后进行算法处理。

以下例程采用第二种方式实现。

STM32例程

例程采用STM32F103ZET6芯片开发板和使用STM32CUBEIDE开发环境。 首先建立项目,设置时钟,外部8MHz时钟倍频到系统时钟。 采用USART1.配置异步串口输出数据USART1为115200波特率: 采用SPI1作为AS5048A配置通信接口:

SPI片选信号由GPIO逻辑控制,需要单独配置: 然后实现代码,通过串口输出角度数据,帧头为0x55 0xaa, 然后是2个字节16位的角度数据。360度对应0 ~ (16384-1)输出。

/* USER CODE BEGIN Header */ /** ****************************************************************************** * @file : main.c * @brief : Main program body ****************************************************************************** * @attention * * &lth2><center>&copy; Copyright (c) 2020 STMicroelectronics. * All rights reserved.</center></h2> * * This software component is licensed by ST under BSD 3-Clause license, * the "License"; You may not use this file except in compliance with the * License. You may obtain a copy of the License at: * opensource.org/licenses/BSD-3-Clause * ****************************************************************************** */
//Written by Pegasus Yu
/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/
#include "main.h"

/* Private includes ----------------------------------------------------------*/
/* USER CODE BEGIN Includes */

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/
/* USER CODE BEGIN PTD */
#define __AS5048A2_CS_ENABLE() HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_RESET)
#define __AS5048A2_CS_DISABLE() HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET)

#define __Read_NOP 0xc000
#define __Read_Clear_Error_Flag 0x4001
#define __Read_Angle 0xffff

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/
/* USER CODE BEGIN PD */

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/
/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/
SPI_HandleTypeDef hspi1;

UART_HandleTypeDef huart1;

/* USER CODE BEGIN PV */

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/
void SystemClock_Config(void);
static void MX_GPIO_Init(void);
static void MX_SPI1_Init(void);
static void MX_USART1_UART_Init(void);
/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/
/* USER CODE BEGIN 0 */
uint16_t SPI_TX_DATA[10]={ 
        0};
uint16_t SPI_RX_DATA[10]={ 
        0};

const uint8_t op_num = 4;
uint16_t origin_value = 0;
uint8_t i;

uint8_t TXD[4]={ 
        0};
uint16_t post_process_value=0;
/* USER CODE END 0 */

/** * @brief The application entry point. * @retval int */
int main(void)
{ 
        
  /* USER CODE BEGIN 1 */

  /* USER CODE END 1 */

  /* MCU Configuration--------------------------------------------------------*/

  /* Reset of all peripherals, Initializes the Flash interface and the Systick. */
  HAL_Init();

  /* USER CODE BEGIN Init */

  /* USER CODE END Init */

  /* Configure the system clock */
  SystemClock_Config();

  /* USER CODE BEGIN SysInit */

  /* USER CODE END SysInit */

  /* Initialize all configured peripherals */
  MX_GPIO_Init();
  MX_SPI1_Init();
  MX_USART1_UART_Init();
  /* USER CODE BEGIN 2 */
          TXD[0]=0x55; TXD[1]=0xaa;//frame head

		  SPI_TX_DATA[0] =  __Read_Clear_Error_Flag;
		  SPI_TX_DATA[1] =  __Read_NOP;
		  SPI_TX_DATA[2] =  __Read_Angle;
		  SPI_TX_DATA[3] =  __Read_NOP;

		  for (i = 0; i<op_num; i++)
		    { 
        
			  __AS5048A2_CS_ENABLE();
		      HAL_SPI_TransmitReceive (&hspi1, &SPI_TX_DATA[i], &SPI_RX_DATA[i], 1, 2710);
		      __AS5048A2_CS_DISABLE();
		      HAL_Delay(1);
		    }

		  origin_value = SPI_RX_DATA[3]&0x3fff;

  /* USER CODE END 2 */

  /* Infinite loop */
  /* USER CODE BEGIN WHILE */
  while (1)
  { 
        
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */

    for (i = 0; i<op_num; i++)
     { 
        
	  __AS5048A2_CS_ENABLE();
      HAL_SPI_TransmitReceive (&hspi1, &SPI_TX_DATA[i], &SPI_RX_DATA[i], 1, 2710);
      __AS5048A2_CS_DISABLE();
      HAL_Delay(1);
     }

 	if ( (SPI_RX_DATA[3]&0x3fff)>=origin_value ) post_process_value= (SPI_RX_DATA[3]&0x3fff)-origin_value;
 	else post_process_value= 16384-origin_value+(SPI_RX_DATA[3]&0x3fff);

 	TXD[2] = (post_process_value&0xff00)>>8;
 	TXD[3]= post_process_value&0x00ff;

 	HAL_UART_Transmit(&huart1, TXD, 4, 0xffff); 
 	HAL_Delay(1);
  }
  /* USER CODE END 3 */
}

/** * @brief System Clock Configuration * @retval None */
void SystemClock_Config(void)
{ 
        
  RCC_OscInitTypeDef RCC_OscInitStruct = { 
        0};
  RCC_ClkInitTypeDef RCC_ClkInitStruct = { 
        0};

  /** Initializes the CPU, AHB and APB busses clocks */
  RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
  RCC_OscInitStruct.HSEState = RCC_HSE_ON;
  RCC_OscInitStruct.HSEPredivValue = RCC_HSE_PREDIV_DIV1;
  RCC_OscInitStruct.HSIState = RCC_HSI_ON;
  RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
  RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
  RCC_OscInitStruct.PLL.PLLMUL = RCC_PLL_MUL9;
  if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)
  { 
        
    Error_Handler();
  }
  /** Initializes the CPU, AHB and APB busses clocks */
  RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK
                              |RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;
  RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
  RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;
  RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV2;
  RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;

  if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_2) != HAL_OK)
  { 
        
    Error_Handler();
  }
}

/** * @brief SPI1 Initialization Function * @param None * @retval None */
static void MX_SPI1_Init(void)
{ 
        

  /* USER CODE BEGIN SPI1_Init 0 */

  /* USER CODE END SPI1_Init 0 */

  /* USER CODE BEGIN SPI1_Init 1 */

  /* USER CODE END SPI1_Init 1 */
  /* SPI1 parameter configuration*/
  hspi1.Instance = SPI1;
  hspi1.Init.Mode = SPI_MODE_MASTER;
  hspi1.Init.Direction = SPI_DIRECTION_2LINES;
  hspi1.Init.DataSize = SPI_DATASIZE_16BIT;
  hspi1.Init.CLKPolarity = SPI_POLARITY_LOW;
  hspi1.Init.CLKPhase = SPI_PHASE_2EDGE;
  hspi1.Init.NSS = SPI_NSS_SOFT;
  hspi1.Init.BaudRatePrescaler = SPI_BAUDRATEPRESCALER_32;
  hspi1.Init.FirstBit = SPI_FIRSTBIT_MSB;
  hspi1.Init.TIMode = SPI_TIMODE_DISABLE;
  hspi1.Init.CRCCalculation = SPI_CRCCALCULATION_DISABLE;
  hspi1.Init.CRCPolynomial = 10;
  if (HAL_SPI_Init(&hspi1) != HAL_OK)
  { 
        
    Error_Handler();
  }
  /* USER CODE BEGIN SPI1_Init 2 */

  /* USER CODE END SPI1_Init 2 */

}

/** * @brief USART1 Initialization Function * @param None * @retval None */
static void MX_USART1_UART_Init(void)
{ 
        

  /* USER CODE BEGIN USART1_Init 0 */

  /* USER CODE END USART1_Init 0 */

  /* USER CODE BEGIN USART1_Init 1 */

  /* USER CODE END USART1_Init 1 */
  huart1.Instance = USART1;
  huart1.Init.BaudRate = 115200;
  huart1.Init.WordLength = UART_WORDLENGTH_8B;
  huart1.Init.StopBits = UART_STOPBITS_1;
  huart1.Init.Parity = UART_PARITY_NONE;
  huart1.Init.Mode = UART_MODE_TX_RX;
  huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;
  huart1.Init.OverSampling = UART_OVERSAMPLING_16;
  if (HAL_UART_Init(&huart1) != HAL_OK)
  { 
        
    Error_Handler();
  }
  /* USER CODE BEGIN USART1_Init 2 */

  /* USER CODE END USART1_Init 2 */

}

/** * @brief GPIO Initialization Function * @param None * @retval None */
static void MX_GPIO_Init(void)
{ 
        
  GPIO_InitTypeDef GPIO_InitStruct = { 
        0};

  /* GPIO Ports Clock Enable */
  __HAL_RCC_GPIOA_CLK_ENABLE();

  /*Configure GPIO pin Output Level */
  HAL_GPIO_WritePin(GPIOA, GPIO_PIN_4, GPIO_PIN_SET);

  /*Configure GPIO pin : PA4 */
  GPIO_InitStruct.Pin = GPIO_PIN_4;
  GPIO_InitStruct.Mode = GPIO_MODE_OUTPUT_PP;
  GPIO_InitStruct.Pull = GPIO_NOPULL;
  GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_HIGH;
  HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);

}

/* USER CODE BEGIN 4 */

/* USER CODE END 4 */

/** * @brief This function is executed in case of error occurrence. * @retval None */
void Error_Handler(void)
{ 
        
  /* USER CODE BEGIN Error_Handler_Debug */
  /* User can add his own implementation to report the HAL error return state */

  /* USER CODE END Error_Handler_Debug */
}

#ifdef USE_FULL_ASSERT
/** * @brief Reports the name of the source file and the source line number * where the assert_param error has occurred. * @param file: pointer to the source file name * @param line: assert_param error line source number * @retval None */
void assert_failed(uint8_t *file, uint32_t line)
{ 
        
  /* USER CODE BEGIN 6 */
  /* User can add his own implementation to report the file name and line number, tex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */
  /* USER CODE END 6 */
}
#endif /* USE_FULL_ASSERT */

/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/

此例程持续向USART1输出从AS5048A读取到的角度数据。

–End–

标签: 两轴磁传感器传感器has500cdz传感器willtec磁性传感器8b型高稳定性传感器传感器3313a2h

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台