资讯详情

硬件术语大全—CPU、内存、主板、硬盘、显卡、显示器

一、CPU术语解释 3DNow!:(3Dnowaiting)AMD公司开发的SIMD该指令集可以提高浮点和多媒体操作的速度,其指令数为21。 ALU:(ArithmeticLogicUnit,算术逻辑单元)处理器中使用的部分与数据传输单元和分支单元相同。 BGA:(BallGridArray,球形矩阵排列)一种芯片包装形式,如82443BX。 BHT:(branchpredictiontable,分支预测表)处理器用于确定分支行动方向的值表。 BPU:(BranchProcessingUnit,分支处理单元)CPU用于分支处理的区域。 BrachPediction:(分支预测)从P从5时代开始的先进数据处理方法CPU判断程序分支的方向可以更快地计算速度。 CMOS:(ComplementaryMetalOxideSemiconductor,它是一种特殊的芯片,最常用的是主板BIOS(BasicInput/Output System,基本输入/输出系统)。 CISC:(ComplexInstructionSetComputing,与复杂指令集计算机相比)RISC它的指令位数较长,因此被称为复杂的指令。x86指令长度为87位。 COB:(Cacheonboard,处理器卡上集成缓存通常指二次缓存,如奔腾II COD:(CacheonDie,处理器芯片内的集成缓存通常指二次缓存:PGA赛扬370 CPGA:(CeramicPinGridArray,陶瓷针格栅阵列)芯片封装形式。 CPU:(CenterProcessingUnit,计算机系统的大脑用于控制和管理整个机器的运行,并执行计算任务。 DataForwarding:(数据发送前)CPU将一个单元的输出值内容复制到另一个单元的输入值个单元的输入值。 Decode:因为X86指令长度不一致,必须用一个单元翻译,真正的核心必须按照翻译后的要求工作。 EC:(EmbeddedController,嵌入式控制器)在一组特定系统中添加到固定位置并完成一定任务的控制装置称为嵌入式控制器。 EmbeddedChips:(嵌入式)特殊用途CPU,通常放置在非计算机系统中,如家用电器。 EPIC:(explicitlyparallelinstructioncode,英特尔的64个芯片架构本身无法执行x86指令可以通过译码器兼容旧的x只是运算速度比真正的32位芯片低。 FADD:(FloationgPointAddition,浮点加)FCPGA(FlipChipPinGridArray,一种芯片封装形式,例如:奔腾III370。 FDIV:(FloationgPointDivide,浮点除)FEMMS(FastEntry/ExitMultimediaState,快速进入/退出多媒体状态) 在多能奔腾中,MMX浮点单元不能同时运行。新芯片加速了两者之间的切换,即FEMMS。 FFT:(fastFouriertransform,可以测试快速热欧姆转换的复杂算法CPU浮点能力。 FID:(FID:Frequencyidentify,奔腾频率识别号)III通过ID号来检查CPU能有效防止频率的方法Remark。 FIFO:(FirstInputFirstOutput,先入先出队列)这是一种传统的按序执行方法,先进入指令先完成并引退,再执行第二条指令。 FLOP:(FloatingPointOperationsPerSecond,浮点*计算/秒)CPU浮点能力单位。 FMUL:(FloationgPointMultiplication,浮点乘) FPU:(FloatPointUnit,浮点运算单元)FPU以前是专门用于浮点操作的处理器FPU是一种单独芯片,在486之后,英特尔把FPU与集成在CPU之内。 FSUB:(FloationgPointSubtraction,浮点减) HL-PBGA:芯片封装形式(表面粘合、高耐热、轻薄塑料球形矩阵包装)。 IA:(IntelArchitecture,英特尔公司开发的英特尔架构)x86芯片结构。 ID:(identify,识别号)用于判断不同芯片的识别代码。 IMM:(IntelMobileModule,英特尔移动模块)英特尔开发了用于笔记本电脑的处理器模块,集成了CPU以及其它控制设备。 InstructionsCache:(指令缓存)由于系统主内存的速度较慢,当CPU读取指令会导致CPU停下来等待内存传输。指令缓存是主内存和CPU即使增加了一个快速的存储区域,CPU当没有要求指令时,主内存会自动将指令提前发送到指令缓存CPU当需要指令时,可以直接从指令缓存中读取,无需存取主内存,减少CPU等待时间。 InstructionColoring:(指令分类)是一种制造预测执行指令的技术。一旦预测判断由相应的指令决定,处理器将处理相同的指令。 InstructionIssue:(指令发送)是第一个CPU管道用于接收内存发送的指令,并发送给执行单位。IPC(InstructionsPerClockCycle,指令/时钟周期)表示一个时钟周期中可以完成的指令数量。 KNI:(KatmaiNewInstructions,Katmai?*噶罴碨SE)Latency(潜伏期)字面上很难理解其含义。事实上,这意味着完全执行指令所需的时钟周期。潜伏期越少越好。严格地说,潜伏期包括从接收到发送指令的整个过程。今天的大部分x86个指令大约需要5个时钟,但其中一些周期与其他指令交迭(并行处理),因此CPU制造商宣传的潜伏期比实际时间长。 LDT:(LightningDataTransport,闪电数据传输总线)K8采用2000外频的新型数据总线MHz以上。 MMX:(MultiMediaExtensions,英特尔最早开发的多媒体扩展指令集)SIMD指令集可以提高浮点和多媒体操作的速度。 MFLOPS:(MillionFloationgPoint/Second,每秒百万浮点*作)计算CPU浮点能力指令为基准的浮点能力单位。 NI:(Non-Intel,非英特尔架构) 除了英特尔,还有许多其他生产兼容性x由于专利权问题,86系统制造商的产品与英特尔系不同,但仍能运行x86指令。 OLGA:(OrganicLandGridArray,芯片封装形式为基板格栅阵列)。 OoO:(OutofOrder,乱序执行)Post-RISC芯片的特点之一是加速处理器运行速度的架构,不能按程序提供的顺序完成计算任务。 PGA:(Pin-GridArray,引脚网格阵列)芯片封装形式,缺点是耗电量大。 Post-RISC:其核心是一种新的处理器架构RISC,而外围是CISC,结合两种结构的优点,具有预测执行、处理器重命名等先进特点,如:Athlon。 PSN:(ProcessorSerialnumbers,识别处理器特性的一组号码,包括主频、生产日期、生产编号等。 PIB:(ProcessorInaBox,盒装处理器)CPU制造商在市场上正式销售的产品通常比OEM(OriginalEquipment Manufacturer,原设备制造商)散装芯片在市场上流通昂贵,但只有PIB拥有厂家的正式保修权。 PPGA:(PlasticPinGridArray,塑料针矩阵包装)芯片包装形式,缺点是功耗大。  PQFP: (Plastic Quad Flat Package,塑料方块平面封装)一种芯片封装形式。      RAW: (Read after Write,写后读)这是CPU乱序执行造成的错误,即在必要条件未成立之前,已经先写下结论,导致最终结果出错。      Register Contention: (抢占寄存器)当寄存器的上一个写回任务未完成时,另一个指令征用此寄存器时出现的冲突。      Register Pressure: (寄存器不足)软件算法执行时所需的寄存器数目受到限制。对于X86处理器来  说,寄存器不足已经成为了它的最大特点,因此AMD才想在下一代芯片K8之中,增加寄存器的数量。      Register Renaming: (寄存器重命名)把一个指令的输出值重新定位到一个任意的内部寄存器。在x86  架构中,这类情况是常常出现的,如:一个fld或fxch或mov指令需要同一个目标寄存器时,就要动用到寄存器重命名。      Remark:(芯片频率重标识)芯片制造商为了方便自己的产品定级,把大部分CPU都设置为可以自由调节倍频和外频,它在同一批CPU中选出好的定为较高的一级,性能不足的定位较低的一级,这些都在工厂内部完成,是合法的频率定位方法。但出厂以后,经销商把低档的CPU超频后,贴上新的标签,当成高档CPU卖的非法频率定位则称为Remark。因为生产商有权力改变自己的产品,而经销商这样做就是侵犯版权,不要以为只有软件才有版权,硬件也有版权呢。      Resource contention: (资源冲突)当一个指令需要寄存器或管道时,它们被其它指令所用,处理器不能即时作出回应,这就是资源冲突。      Retirement: (指令引退)当处理器执行过一条指令后,自动把它从调度进程中去掉。如果  仅是指令完成,但仍留在调度进程中,亦不算是指令引退。      RISC: (Reduced Instruction Set Computing,精简指令集计算机)一种指令长度较短的计算机,其运行速度比CISC要快。      SEC: (Single Edge Connector,单边连接器)一种处理器的模块,如:奔腾II。      SIMD: (Single Instruction Multiple Data,单指令多数据流)能够复制多个*作,并把它们打包在大型寄存器的一组指令集,例:3DNow!、SSE。      SiO2F: (Fluorided Silicon Oxide,二氧氟化硅)制造电子元件才需要用到的材料。      SOI: (Silicon on insulator,绝缘体硅片)SONC(System on a chip,系统集成芯片)在一个处理器中集成多种功能,如:Cyrix MediaGX。      SPEC: (System Performance Evaluation Corporation,系统性能评估测试)测试系统总体性能的Benchmark。      Speculative execution:(预测执行)一个用于执行未明指令流的区域。当分支指令发出之后,传统处理器在未收到正确的反馈信息之前,是不能做任何工作的,而具有预测执行能力的新型处理器,可以估计即将执行的指令,采用预先计算的方法来加快整个处理过程。      SQRT: (Square Root Calculations,平方根计算)一种复杂的运算,可以考验CPU的浮点能力。      SSE: (Streaming SIMD Extensions,单一指令多数据流扩展)英特尔开发的第二代SIMD指令集,有70条指令,可以增强浮点和多媒体运算的速度。      Superscalar: (超标量体系结构)在同一时钟周期可以执行多条指令流的处理器架构。      TCP: (Tape Carrier Package,薄膜封装)一种芯片封装形式,特点是发热小。      Throughput: (吞吐量)它包括两种含义:        第一种:执行一条指令所需的最少时钟周期数,越少越好。执行的速度越快,下一条指令和它抢占资源的机率也越少。        第二种:在一定时间内可以执行最多指令数,当然是越大越好。      TLBs: (Translate Look side Buffers,翻译旁视缓冲器)用于存储指令和输入/输出数值的区域。      VALU: (Vector Arithmetic Logic Unit,向量算术逻辑单元)在处理器中用于向量运算的部分。      VLIW: (Very Long Instruction Word,超长指令字)一种非常长的指令组合,它把许多条指令连在一起,增加了运算的速度。      VPU: (Vector Permutate Unit,向量排列单元)在处理器中用于排列数据的部分。二、内存术语解释      BANK:BANK是指内存插槽的计算单位(也有人称为记忆库),它是计算机系统与内存间资料汇流的基本运作单位。      内存的速度:内存的速度是以每笔CPU与内存间数据处理耗费的时间来计算,为总线循环(bus cycle)以奈秒(ns)为单位。      内存模块 (Memory Module):提到内存模块是指一个印刷电路板表面上有镶嵌数个记忆体芯片chips,而这内存芯片通常是DRAM芯片,但近来系统设计也有使用快取隐藏式芯片镶嵌在内存模块上内存模块是安装在PC 的主机板上的专用插槽(Slot)上镶嵌在Module上DRAM芯片(chips)的数量和个别芯片(chips)的容量,是决定内存模块的设计的主要因素。      SIMM (Single In-line Memory Module):电路板上面焊有数目不等的记忆IC,可分为以下2种型态:        72PIN:72脚位的单面内存模块是用来支持32位的数据处理量。        30PIN:30脚位的单面内存模块是用来支持8位的数据处理量。      DIMM (Dual In-line Memory Module):(168PIN) 用来支持64位或是更宽的总线,而且只用3.3伏特的电压,通常用在64位的桌上型计算机或是服务器。      RIMM:RIMM模块是下一世代的内存模块主要规格之一,它是Intel公司于1999年推出芯片组所支持的内存模块,其频宽高达1.6Gbyte/sec。      SO-DIMM (Small Outline Dual In-line Memory Module) (144PIN): 这是一种改良型的DIMM模块,比一般的DIMM模块来得小,应用于笔记型计算机、列表机、传真机或是各种终端机等。      PLL: 为相回路,用来统一整合时脉讯号,使内存能正确的存取资料。      Rambus 内存模块 (184PIN): 采用Direct RDRAM的内存模块,称之为RIMM模块,该模块有184pin脚,资料的输出方式为串行,与现行使用的DIMM模块168pin,并列输出的架构有很大的差异。      6层板和4层板(6 layers V.S. 4 layers): 指的是电路印刷板PCB Printed Circuit Board用6层或4层的玻璃纤维做成,通常SDRAM会使用6层板,虽然会增加PCB的成本但却可免除噪声的干扰,而4层板虽可降低PCB的成本但效能较差。      Register:是缓存器的意思,其功能是能够在高速下达到同步的目的。      SPD:为Serial Presence Detect 的缩写,它是烧录在EEPROM内的码,以往开机时BIOS必须侦测memory,但有了SPD就不必再去作侦测的动作,而由BIOS直接读取 SPD取得内存的相关资料。      Parity和ECC的比较:同位检查码(parity check codes)被广泛地使用在侦错码(error detection codes)上,他们增加一个检查位给每个资料的字元(或字节),并且能够侦测到一个字符中所有奇(偶)同位的错误,但Parity有一个缺点,当计算机查到某个Byte有错误时,并不能确定错误在哪一个位,也就无法修正错误。      缓冲器和无缓冲器(Buffer V.S. Unbuffer):有缓冲器的DIMM 是用来改善时序(timing)问题的一种方法无缓冲器的DIMM虽然可被设计用于系统上,但它只能支援四条DIMM。若将无缓冲器的DIMM用于速度为 100Mhz的主机板上的话,将会有存取不良的影响。而有缓冲器的DIMM则可使用四条以上的内存,但是若使用的缓冲器速度不够快的话会影响其执行效果。换言之,有缓冲器的DIMM虽有速度变慢之虞,但它可以支持更多DIMM的使用。      自我充电 (Self-Refresh):DRAM内部具有独立且内建的充电电路于一定时间内做自我充电, 通常用在笔记型计算机或可携式计算机等的省电需求高的计算机。      预充电时间 (CAS Latency):通常简称CL。例如CL=3,表示计算机系统自主存储器读取第一笔资料时,所需的准备时间为3个外部时脉 (System clock)。CL2与CL3的差异仅在第一次读取资料所需准备时间,相差一个时脉,对整个系统的效能并无显著影响。      时钟信号 (Clock):时钟信号是提供给同步内存做讯号同步之用,同步记忆体的存取动作必需与时钟信号同步。      电子工程设计发展联合会议 (JEDEC):JEDEC大部分是由从事设计、发明的制造业尤以有关计算机记忆模块所组成的一个团体财团,一般工业所生产的记忆体产品大多以JEDEC所制定的标准为评量。      只读存储器ROM (Read Only Memory):ROM是一种只能读取而不能写入资料之记燱体,因为这个特所以最常见的就是主机板上的 BIOS (基本输入/输出系统Basic Input/Output System)因为BISO是计算机开机必备的基本硬件设定用来与外围做为低阶通信接口,所以BISO之程式烧录于ROM中以避免随意被清除资料。      EEPROM (Electrically Erasable Programmable ROM):为一种将资料写入后即使在电源关闭的情况下,也可以保留一段相当长的时间,且写入资料时不需要另外提高电压,只要写入某一些句柄,就可以把资料写入内存中了。      EPROM (Erasable Programmable ROM):为一种可以透过紫外线的照射将其内部的资料清除掉之后,再用烧录器之类的设备将资料烧录进 EPROM内,优点为可以重复的烧录资料。      程序规画的只读存储器 (PROM):是一种可存程序的内存,因为只能写一次资料,所以它一旦被写入资料若有错误,是无法改变的且无法再存其它资料,所以只要写错资料这颗内存就无法回收重新使用。      MASK ROM:是制造商为了要大量生产,事先制作一颗有原始数据的ROM或EPROM当作样本,然后再大量生产与样本一样的 ROM,这一种做为大量生产的ROM样本就是MASK ROM,而烧录在MASK ROM中的资料永远无法做修改。      随机存取内存RAM ( Random Access Memory):RAM是可被读取和写入的内存,我们在写资料到RAM记忆体时也同时可从RAM读取资料,这和ROM内存有所不同。但是RAM必须由稳定流畅的电力来保持它本身的稳定性,所以一旦把电源关闭则原先在RAM里头的资料将随之消失。      动态随机存取内存 DRAM (Dynamic Random Access Memory):DRAM 是Dynamic Random Access Memory 的缩写,通常是计算机内的主存储器,它是而用电容来做储存动作,但因电容本身有漏电问题,所以内存内的资料须持续地存取不然  资料会不见。      FPM DRAM (Fast Page Mode DRAM):是改良的DRAM,大多数为72IPN或30PIN的模块,FPM 将记忆体内部隔成许多页数Pages,从512 bite 到数 Kilobytes 不等,它特色是不需等到重新读取时,就可读取各page内的资  料。      EDO DRAM (Extended Data Out DRAM):EDO的存取速度比传统DRAM快10%左右,比FPM快12到30倍一般为72PIN、168PIN的模块。      SDRAM:Synchronous DRAM 是一种新的DRAM架构的技术;它运用晶片内的clock使输入及输出能同步进行。所谓clock同步是指记忆体时脉与CPU的时脉能同步存取资料。SDRAM节省执行指令及数据传输的时间,故可提升计算机效率。      DDR:DDR 是一种更高速的同步内存,DDR SDRAM为168PIN的DIMM模块,它比SDRAM的传输速率更快, DDR的设计是应用在服务器、工作站及数据传输等较高速需求之系统。      DDRII (Double Data Rate Synchronous DRAM):DDRII 是DDR原有的SLDRAM联盟于1999年解散后将既有的研发成果与DDR整合之后的未来新标准。DDRII的详细规格目前尚未确定。      DRDRAM (Direct Rambus DRAM):是下一代的主流内存标准之一,由Rambus 公司所设计发展出来,是将所有的接脚都连结到一个共同的Bus,这样不但可以减少控制器的体积,已可以增加资料传送的效率。      RDRAM (Rambus DRAM):是由Rambus公司独立设计完成,它的速度约一般DRAM的10倍以上,虽有这样强的效能,但使用后内存控制器需要相当大的改变,所以目前这一类的内存大多使用在游戏机器或者专业的图形加速适配卡上。      VRAM (Video RAM):与DRAM最大的不同在于其有两组输出及输入口,所以可以同时一边读入,一边输出资料。      WRAM (Window RAM):属于VRAM的改良版,其不同之处在于其控制线路有一、二十组的输入/输出控制器,并采用EDO的资料存取模式。      MDRAM (Multi-Bank RAM):MIDRAM 的内部分成数个各别不同的小储存库 (BANK),也就是数个属立的小单位矩阵所构成。每个储存库之间以高于外部的资料速度相互连接,其应用于高速显示卡或加速卡中。      静态随机处理内存 SRAM (Static Random Access Memory):SRAM 是Static Random Access Memory 的缩写,通常比一般的动态随机处理内存处理速度更快更稳定。所谓静态的意义是指内存资料可以常驻而不须随时存取。因为此种特性,静态随机处理内存通常被用来做高速缓存。      Async SRAM:为异步SRAM这是一种较为旧型的SRAM,通常被用于电脑上的 Level 2 Cache上,它在运作时独立于计算机的系统时脉外。      Sync SRAM:为同步SRAM,它的工作时脉与系统是同步的。      SGRAM (Synchronous Graphics RAM):是由SDRAM再改良而成以区块Block为单位,个别地取回或修改存取的资料,减少内存整体读写的次数增加绘图控制器。      高速缓存 (Cache Ram):为一种高速度的内存是被设计用来处理运作CPU。快取记忆体是利用 SRAM 的颗粒来做内存。因连接方式不同可分为一是外接方式(External)另一种为内接方式(Internal)。外接方式是将内存放在主机板上也称为 Level 1 Cache而内接方式是将内存放在CPU中称为Level 2 Cache。      PCMCIA (Personal Computer Memory Card International Association):是一种标准的卡片型扩充接口,多半用于笔记型计算机上或是其它外围产品,其种类可以分为:        Type 1:3.3mm的厚度,常作成SRAM、Flash RAM 的记忆卡以及最近打印机所使用的DRAM记忆卡。      Type 2:5.5mm的厚度,通常设计为笔记计算机所使用的调制解调器接口(Modem)。      Type 3:10.5mm的厚度,被运用为连接硬盘的ATA接口。      Type 4:小型的PCMCIA卡,大部用于数字相机。      FLASH:Flash内存比较像是一种储存装置,因为当电源关掉后储存在Flash内存中的资料并不会流失掉,在写入资料时必须先将原本的资料清除掉,然后才能再写入新的资料,缺点为写入资料的速度太慢。      重新标示过的内存模块(Remark Memory Module):在内存市场许多商家都会贩售重新标示过的内存模块,所谓重新标示过的内存模块就是将芯片Chip上的标示变更过,使其所显示出错误的讯息以提供商家赚取更多的利润。一般说来,业者会标示成较快的速度将( -7改成-6)或将没有厂牌的改为有厂牌的。要避免购买到这方面的产品,最佳的方法就是向好声誉的供货商来购买顶级芯片制造商产品。      内存的充电 (Refresh):主存储器是DRAM组合而成,其电容需不断充电以保持资料的正确。一般有2K与4K Refresh的分类,而2K比4K有较快速的Refresh但2K比4K耗电。 三、主板术语解释      芯片组:芯片组是主板的灵魂,它决定了主板所能够支持的功能。目前市面上常见的芯片组有Intel、VIA、SiS、Ali、AMD等几家公司的产品。其中,Intel公司的主流产品有440BX、i820、i815/815E等。VIA公司主要有VIA Apollo Pro 133/133A、KT 133等芯片组。SiS公司主要是SiS 630芯片组。Ali公司主要有Ali Aladdin TNT2芯片组、AMD则有AMD 750芯片组。其中,除了Intel公司的i820、i815/815E芯片组以外,所有的芯片组都是由两块芯片构成:靠近CPU的那一块叫做北桥芯片,主要负责控制CPU、内存和显示功能;靠近PCI插槽的那一块叫做南桥,主要负责控制输入输出(如对硬盘的UDMA/66/200模式的支持),软音效等。而Intel公司的i820、i815/815E芯片组采用了新的结构,由三块芯片构成。分别是MCH(memory controller hub,功能类似于北桥)、ICH(I/O controller hub,功能类似于南桥)、FWH(Fireware hub,功能类似于BIOS芯片)。由于新的芯片组使用专门的总线(一般称为加速集线器结构AHA,Acclerated hub Architecture)来连接主板的各设备,而不是像原来那样使用PCI总线进行数据传输,因此在多设备工作时有比较大的效能提高。      CPU接口:由于市场上主流的CPU大多是Intel和AMD两家公司的产品,所以主板上常见的也只有Socket 370(支持Intel新赛扬和coppermine“铜矿”处理器),Slot 1(支持Intel赛扬和老PIII处理器,也可以加转接卡支持Socket 370处理器),Slot A(支持AMD Athlon处理器),Socket A(支持AMD新Athlon和Duron处理器)等几种接口。不同的接口之间不能通用(只有SLOT 1接口可以加转接卡支持Socket 370处理器)。大家购买时要认清。      新型实用型技术:     a.软跳线技术:所谓跳线,就是一组通断开关,通过对通、断的不同组合,来达到调整CPU频率或者实现一些其他功能(如调整电压)的目的。以前的跳线一般是由一组金属针脚或拨指开关组成。自从升技公司的经典软跳线技术Softmenu出现以后,有不少的厂商也加入这项功能,即可以在BIOS中直接设定 CPU频率和电压等。但由于前段时间CIH等病毒对BIOS破坏比较严重,所以一些公司还是保留了硬跳线(如DIP开关)等功能。      b.新的BIOS升级技术:以前的BIOS升级被视为“高手”的专利。因此其有一定的风险,所以普通用户不敢轻易涉足。但是一些厂商开发了一些特殊的BIOS升级功能,使得BIOS升级再不会像以前那样危险和神秘了。比如微星新的815主板就可以在Internet上直接升级,只要你连上网络,系统将自动检测你的BIOS版本,如果发现你所使用的产品有新的BIOS文件,将会自动下载并更新,大大减少了用户的*作。使BIOS更加简单。      c.节能功能:目前的节能功能主要有STD和STR两种。STD(Suspend to Disk),挂起到硬盘,是指系统在深度休眠时,将目前的资料保存在硬盘上,当再次开机时可以省去重启的时间,目前STD技术已属于淘汰的类型,更新的是 STR技术。STR(Suspend to Ram),挂起到内存,即当系统深度休眠时将资料保存在内存中,重启到原来的状态只需要3秒左右。目前的较新的主板(如815主板)都支持此技术。      d.异步内存调整技术: 在VIA的芯片组VIA Apollo Pro 133/133A和KT 133等中,有一项内存和外频异步运行的功能。就是在标准外频下(如66MHz或100MHz等),可以将内存运行的频率比外频低33MHz或高 33MHz。这项技术极大地方便了一些老用户,这样就可以使用将比较新的内存和比较老的CPU(或比较老的内存和比较新的CPU)进行合理搭配,充分发挥其功能。但要注意的是,如果在非标准外频下(如83MHz),那么内存运行的频率将不会按照这个规律增加,具体的增加值会因具体情况有所不同。      e.扩展槽分频技术:每一个类型的总线都有自己额定的运行频率,如果超过太多,就可能使设备运行不正常。比如PCI设备的额定频率是33MHz,AGP设备的额定频率是 66MHz。当外频运行在100MHz时,PCI设备就需要工作在外频的三分之一才能保证设备正常运行(如声卡等设备),这就是通常所说的三分频;如果一旦外频在1333MHz上,PCI设备就需要四分频了。如果外频再往上升,即使是四分频,也会比标准频率高出不少,而且AGP设备通常只支持二分频,所以在高外频下(如150MHz),如果PCI设备(声卡)或AGP设备(显卡)质量不好,将严整影响整个系统的超频性能。目前PCI总线只支持四分频,而 AGP总线只支持二分频。      安全保护技术:由于目前病毒的危害很大,因此一些安全保护技术也必不可少。比如在对BIOS的保护上,就采取了多种形式。最简单的就是在BIOS 旁加上写保护跳线,以避免病毒侵害;还有就是使用双BIOS,即使一个被破坏了也有另一个可以工作,如技嘉就采用了这种技术;再有即使一些厂商自己开发的集成几种技术的产品,如联想的“无敌锁”,“宙斯盾”等,其原理也是避免病毒侵害BIOS。主板诊断技术也是一项比较实用的技术。如微星的D-LED技术,就是将故障用四个灯亮的颜色来表示。如显卡故障用两个红灯表示,而内存故障用三个红灯表示等。这样可以帮助一些初学者判断故障的所在,以便对症下药。而硕泰克开发的语音提示技术将语音芯片固化在主板上,可以将故障直接“说”出来(用机箱小喇叭发声),更是满足一些追新族的喜好。新型接口:AGP Pro接口:随着显卡处理功能的强大,其能量消耗也越来越高,传统的AGP插槽已经不能满足需要。而AGP Pro插槽比普通AGP插槽长一些,增加了一些接地线,使得信号更加稳定,在大电流的干扰下,这样可以提高数据传输的准确性,使显卡更加稳定地工作。 CNR插槽:(communication and networking riser)是出现在新的i815E芯片组上的新插槽。它支持以太网卡和MODEM,功能有点类似于AMR插槽,但是更强大。      440BX芯片组:INTEL专为支持高主频Pentium II而开发的芯片组,它在440LX的基础上有两大改进:一是可支持400MHz的Pentium II;二是内存最大可扩展到1GB。        440EX芯片组:它是INTEL为支持"赛扬"微处理器而开发的芯片组。它定位在低价位的个人电脑,由它构成的主板最大内存可支持256MB。        440FX芯片组:它是Pentium PRO微处理器开发的芯片组。它为三片结构,分别是82441FX(系统及内存控制器)、82442FX(数据总线加速器)、82371SB(PCI、ISA、IDE加速控制器)。       440LX芯片组:它为两片结构,它引入了QPA四端口加速设计,使得动态仲裁速度更快;流水线多元化更合理;UITRA DMA性能经过改进后,使硬盘传输率更快。       450NX芯片组:它是INTEL为高档服务器研制的超级芯片组。主要为Deschutes(增强型Pentium II)芯片而开发的。目标定位于服务器、高档工作站领域。它的CACHE最大可扩展到2MB。      5591+5595套片:它是SIS公司专为支持Socket-7结构的高主频Pentium级CPU而开发的芯片组。它可以支持AGP图形加速卡。有一些还可以支持100MHz 总线频率,CPU主频率可支持到266MHz;SDRAM内存最大可扩展到768MB。        ACPI电源接口:是Pentium以上主板特有的一种新功能。作用是在管理电脑内部各种部件时尽量做到节省能源。 SMP对称多处理模式:它的特点是当插入两个CPU同时工作时,就支持交替运行方式好提高CPU的工作效率。但两个CPU的特性一定要完全一致。      AGP插槽:(Accelerated-Graphics-Port:加速图形端口)它是一种为缓解视频带宽紧张而制定的总线结构。它将显示卡与主板的芯片组直接相连,进行点对点传输。但是它并不是正规总线,因它只能和AGP显卡相连,故不具通用和扩展性。其工作的频率为66MHz,是PCI总线的一倍,并且可为视频设备提供528MB/S的数据传输率。所以实际上就是PCI的超集。      AMD-640芯片组:该芯片组是AMD公司的产品。它的一些特性为:支持所有的Pentium级CPU,特别优化AMD-K6-CPU;能真正发挥66MHZ以上的SDRAM高速性能;还具有遥控唤醒功能;而且内部带有USB接口控制器等;但它不支持AGP。      ASUS插槽:是华硕公司在其生产的主板上别出新裁的一个设计。其结构是在PCI插槽后又增加了一个短槽,以配合华硕自己生产的配套声卡使用。      ATX板型:它的布局是"横"板设计,就象把Baby-AT板型放倒了过来,这样做增加了主板引出端口的空间,使主板可以集成更多的扩展功能。      ATX电源: ATX电源是ATX主板配套的电源,为此对它增加了一些新作用;一是增加了在关机状态下能提供一组微电流(5V/100MA)供电。二是增加有3.3V低电压输出。      Baby-AT板型:也就是"竖"型板设计,即短边位于机箱后面板,这样就使主板上各种引出端口的空间很小,不利于插接各种引线及外设。      BIOS:BIOS(Basic-Input-&-Output-System:基本输入/输出系统)是事先固化在主板的一个专用EPROM芯片中的一组特殊的管理程序。主板就是通过这个管理程序来实现各个部件之间的控制和协调的。      CMOS:CMOS是电脑主板上的一块可读写的RAM芯片,用它来保护当前系统的硬件配置和用户对某些参数的设定。现在的厂商们把CMOS程序做到了BIOS芯片中,当开机时就可按特定键进入CMOS设置程序对系统进行设置。所以又被人们叫做BIOS设置。      COM端口:一块主板一般带有两个COM串行端口。通常用于连接鼠标及通讯设备(如连接外置式MODEM进行数据通讯)等。   Concurrent PCI: 并发PCI总线技术,它实际是PCI的一种增强型结构。用于提高CPU与PCI、CPU与内存之间并处理能力,是INTEL最先在440FX中投入使用的。      DIMM:(Dual-Inline-Menory-Modules)是一种新型的168线的内存插槽。它要比SIMM插槽要长一些,可以插下容量不超过64MB的单条SDRAM。并且它也支持新型的168线EDO-DRAM存储器。      EIDE:EIDE(Enhanced IDE:增强性IDE)是Pentium以上主板必备的标准接口。主板上通常可提供两个EIDE接口。在Pentium以上主板中,EDIE都集成在主板中。      EISA总线:EISA(Extended Industy Standard Architecture:扩展工业标准结构)是EISA集团为配合32位CPU而设计的总线扩展标准。它吸收了IBM微通道总线的精华,并且兼容ISA总线。但现今已被淘汰。      FLASH:FLASH(FLASH-MEMORY:快擦型存储器)它是Pentium以上主板用来存储BIOS程序的。      I/O芯片:在486以上档次的主板,板上都有I/O控制电路。它负责提供串行、并行接口及软盘驱动器控制接口。      IDE:IDE(Integrated Device Electronics):一种磁盘驱动器的接口类型,也称为ATA接口。最多可连接两个IDE接口设备,允许最大硬盘容量528兆,控制线和数据线合用一根40芯的扁平电缆与硬盘接口卡连接。数据传输率为3.3Mbps-8.33Mbps。      ISA总线:(Industry Standard Architecture:工业标准体系结构)是IBM公司为PC/AT电脑而制定的总线标准,为16位体系结构,只能支持16位的I/O设备,数据传输率大约是8MB/S。也称为AT标准。      MVP3芯片组:它是VIA公司继VP3之后推出的最新产品。它支持100MHz总线频率。主板内存最大可扩展到1GB,支持ECC功能,CACHE最大可支持2MB。      PCI总线:PCI(Peripheral Component Interconnect:外部设备互连)是由SIG集团推出的总线结构。它具有132 MB/S的数据传输率及很强的带负载能力,可适用于多种硬件平台,同时兼容ISA、EISA总线。      POST:POST(Power-On-Self-Test:上电自检)是BIOS功能的一个主要部分。它负责完成对CPU、主板、内存、软硬盘子系统、显示子系统(包括显示缓存)、串并行接口、键盘、CD-ROM光驱等的检测。      PS/2鼠标接口:现今的一些流行的Pentium主板多采用PS/2做鼠标接口,而放弃常用的串行接口做鼠标接口。这样做的好处是:既可以节省一个常规串行接口,又可以使鼠标得到更快的响应速度。      SCSI:SCSI(Small Computer System Interface:小型电脑系统界面)它可以驱动至少6个(SCSI-3标准扩充后达32个)外部设备;并且它的数据传输率可达到40Mbps、SCSI-3更可高达80Mbps。      SIMM:(Single-In-line-Menory-Modules)是我们经常用到的一种内存插槽,它是72线结构。如今的内存模块大部分是把若干个内存芯片集成在一小块电路板上。      VL局部总线:(Local Bus:局部总线)是VESA组织设计的一种开放性总线结构。它的宽度是32位,工作频率是33MHz,数据传输率为132MB/S。但是它的定义标准不严格,兼容性不好,并且带负载能力相对来说比较低,所以已经被PCI代替。      VP3芯片组:它是VIA公司于1997年第四季度推出的最新产品。它是用于Socket 7结构的主板。它的主要性能指标为:支持所有的Pentium级CPU,CPU的最高频率可到300MHz,支持第二代SDRAM内存;最大可扩展到1GB。      电池:Pentium级主板多数用的是锂电池,只有少数用全封闭结构式电池。它是用来保持主板CMOS数据的。      免跳线主板:它是指CPU的主频、工作电压及主板总线工作频率设置均不使用常规的跳线进行设置,而是通过Setup(系统BIOS)进行"软"设置。        内存: 内存实质上是一或多组的集成电路,具备数据的输入输出和数据存储的功能。因其存储信息的功能各不相同,所以分为只读、可改写的只读和随机存储器。      芯片组:(Chipset)是构成主板电路的核心。一定意义上讲,它决定了主板的级别和档次。它就是"南桥"和"北桥"的统称,就是把以前复杂的电路和元件最大限度地集成在几颗芯片内的芯片组。 四、硬盘术语解释        硬盘的转速(Rotationl Speed):也就是硬盘电机主轴的转速,转速是决定硬盘内部传输率的关键因素之一,它的快慢在很大程度上影响了硬盘的速度,同时转速的快慢也是区分硬盘档次的重要标志之一。硬盘的主轴马达带动盘片高速旋转,产生浮力使磁头飘浮在盘片上方。要将所要存取资料的扇区带到磁头下方,转速越快,等待时间也就越短。因此转速在很大程度上决定了硬盘的速度。目前市场上常见的硬盘转速一般有5400rpm、7200rpm、甚至10000rpm。理论上,转速越快越好。因为较高的转速可缩短硬盘的平均寻道时间和实际读写时间。可是转速越快发热量越大,不利于散热。现在的主流硬盘转速一般为7200rpm以上。      随着硬盘容量的不断增大,硬盘的转速也在不断提高。然而,转速的提高也带来了磨损加剧、温度升高、噪声增大等一系列负面影响。于是,应用在精密机械工业上的液态轴承马达(Fluid dynamic bearing motors)便被引入到硬盘技术中。液态轴承马达使用的是黏膜液油轴承,以油膜代替滚珠。这样可以避免金属面的直接磨擦,将噪声及温度被减至最低;同时油膜可有效吸收震动,使抗震能力得到提高;更可减少磨损,提高寿命。      平均寻道时间(Average seek time):指硬盘在盘面上移动读写头至指定磁道寻找相应目标数据所用的时间,它描述硬盘读取数据的能力,单位为毫秒。当单碟片容量增大时,磁头的寻道动作和移动距离减少,从而使平均寻道时间减少,加快硬盘速度。目前市场上主流硬盘的平均寻道时间一般在9ms以下,大于10ms的硬盘属于较早的产品,一般不值得购买。      平均潜伏时间(Average latency time): 指当磁头移动到数据所在的磁道后,然后等待所要的数据块继续转动到磁头下的时间,一般在2ms-6ms之间。      平均访问时间(Average access time):指磁头找到指定数据的平均时间,通常是平均寻道时间和平均潜伏时间之和。平均访问时间最能够代表硬盘找到某一数据所用的时间,越短的平均访问时间越好,一般在11ms-18ms之间。注意:现在不少硬盘广告之中所说的平均访问时间大部分都是用平均寻道时间所代替的。      突发数据传输率(Burst data transfer rate):指的是电脑通过数据总线从硬盘内部缓存区中所读取数据的最高速率。也叫外部数据传输率(External data transfer rate)。目前采用UDMA/66技术的硬盘的外部传输率已经达到了66.6MB/s。      最大内部数据传输率(Internal data transfer rate):指磁头至硬盘缓存间的最大数据传输率,一般取决于硬盘的盘片转速和盘片数据线密度(指同一磁道上的数据间隔度)。也叫持续数据传输率(sustained transfer rate)。一般采用UDMA/66技术的硬盘的内部传输率也不过25-30MB/s,只有极少数产品超过30MB/s,由于内部数据传输率才是系统真正的瓶颈,因此大家在购买时要分清这两个概念。不过一般来讲,硬盘的转速相同时,单碟容量大的内部传输率高;在单碟容量相同时,转速高的硬盘的内部传输率高。      自动检测分析及报告技术(Self-Monitoring Analysis and Report Technology,简称S.M.A.R.T):现在出厂的硬盘基本上都支持S.M.A.R.T技术。这种技术可以对硬盘的磁头单元、盘片电机驱动系统、硬盘内部电路以及盘片表面媒介材料等进行监测,当 S.M.A.R.T监测并分析出硬盘可能出现问题时会及时向用户报警以避免电脑数据受到损失。S.M.A.R.T技术必须在主板支持的前提下才能发生作用,而且S.M.A.R.T技术也不能保证能预报出所有可能发生的硬盘故障。      磁阻磁头技术MR(Magneto-Resistive Head): MR(MAGNETO-RESITIVEHEAD)即磁阻磁头的简称。MR技术可以更高的实际记录密度、记录数据,从而增加硬盘容量,提高数据吞吐率。目前的MR技术已有几代产品。MAXTOR的钻石三代/四代等均采用了最新的MR技术。磁阻磁头的工作原理是基于磁阻效应来工作的,其核心是一小片金属材料,其电阻随磁场变化而变化,虽然其变化率不足2%,但因为磁阻元件连着一个非常灵敏的放大器,所以可测出该微小的电阻变化。MR技术可使硬盘容量提高 40%以上。GMR(GiantMagnetoresistive)巨磁阻磁头GMR磁头与MR磁头一样,是利用特殊材料的电阻值随磁场变化的原理来读取盘片上的数据,但是GMR磁头使用了磁阻效应更好的材料和多层薄膜结构,比MR磁头更为敏感,相同的磁场变化能引起更大的电阻值变化,从而可以实现更高的存储密度,现有的MR磁头能够达到的盘片密度为3Gbit-5Gbit/in2(千兆位每平方英寸),而GMR磁头可以达到10Gbit- 40Gbit/in2以上。目前GMR磁头已经处于成熟推广期,在今后的数年中,它将会逐步取代MR磁头,成为最流行的磁头技术。      缓存:缓存是硬盘与外部总线交换数据的场所。硬盘的读数据的过程是将磁信号转化为电信号后,通过缓存一次次地填充与清空,再填充,再清空,一步步按照PCI总线的周期送出,可见,缓存的作用是相当重要的。在接口技术已经发展到一个相对成熟的阶段的时候,缓存的大小与速度是直接关系到硬盘的传输速度的重要因素。目前主流硬盘的缓存主要有512KB和2MB等几种。其类型一般是EDO DRAM或SDRAM,目前一般以SDRAM为主。根据写入方式的不同,有写通式和回写式两种。写通式在读硬盘数据时,系统先检查请求指令,看看所要的数据是否在缓存中,如果在的话就由缓存送出响应的数据,这个过程称为命中。这样系统就不必访问硬盘中的数据,由于SDRAM的速度比磁介质快很多,因此也就加快了数据传输的速度。回写式就是在写入硬盘数据时也在缓存中找,如果找到就由缓存就数据写入盘中,现在的多数硬盘都是采用的回写式硬盘,这样就大大提高了性能。      连续无故障时间(MTBF):指硬盘从开始运行到出现故障的最长时间。一般硬盘的MTBF至少在30000或40000小时。      部分响应完全匹配技术PRML(Partial Response Maximum Likelihood):能使盘片存储更多的信息,同时可以有效地提高数据的读取和数据传输率。是当前应用于硬盘数据读取通道中的先进技术之一。PRML 技术是将硬盘数据读取电路分成两段“*作流水线”,流水线第一段将磁头读取的信号进行数字化处理然后只选取部分“标准”信号移交第二段继续处理,第二段将所接收的信号与PRML芯片预置信号模型进行对比,然后选取差异最小的信号进行组合后输出以完成数据的读取过程。PRML技术可以降低硬盘读取数据的错误率,因此可以进一步提高磁盘数据密集度。单磁道时间(Single track seek time):指磁头从一磁道转移至另一磁道所用的时间。      超级数字信号处理器(Ultra DSP)技术:用Ultra DSP进行数学运算,其速度较一般CPU快10到50倍。采用Ultra DSP技术,单个的DSP芯片可以同时提供处理器及驱动接口的双重功能,以减少其它电子元件的使用,可大幅度地提高硬盘的速度和可靠性。接口技术可以极大地提高硬盘的最大外部传输率,最大的益处在于可以把数据从硬盘直接传输到主内存而不占用更多的CPU资源,提高系统性能。      硬盘表面温度: 指硬盘工作时产生的温度使硬盘密封壳温度上升情况。硬盘工作时产生的温度过高将影响薄膜式磁头(包括MR磁头)的数据读取灵敏度,因此硬盘工作表面温度较低的硬盘有更好的数据读、写稳定性。      全程访问时间(Max full seek time):指磁头开始移动直到最后找到所需要的数据块所用的全部时间。      接口技术:口技术可极大地提高硬盘的最大外部数据传输率,现在普遍使用的ULTRAATA/66已大幅提高了E-IDE接口的性能,所谓 UltraDMA66是指一种由Intel及Quantum公司设计的同步DMA协议。使用该技术的硬盘并配合相应的芯片组,最大传输速度可以由 16MB/s提高到66MS/s。它的最大优点在于把CPU从大量的数据传输中解放出来了,可以把数据从HDD直接传输到主存而不占用更多的CPU资源,从而在一定程度上提高了整个系统的性能。由于采用ULTRAATA技术的硬盘整体性能比普通硬盘可提高20%~60%,所以已成为目前E-IDE硬盘事实上的标准。      SCSI硬盘的接口技术也在迅速发展。Ultra160/mSCSI被引入硬盘世界,对硬盘在高计算量应用领域的性能扩展极有裨益,处理关键任务的服务器、图形工作站、冗余磁盘阵列(RAID)等设备将因此得到性能提升。从技术发展看,Ultra160/mSCSI仅仅是硬盘接口发展道路上的一环而已,200MB的光纤技术也远未达到止境,未来的接口技术必将令今天的用户瞠目结舌。      光纤通道技术具有数据传输速率高、数据传输距离远以及可简化大型存储系统设计的优点。目前,光纤通道支持每秒200MB的数据传输速率,可以在一个环路上容纳多达127个驱动器,局域电缆可在25米范围内运行,远程电缆可在10公里范围内运行。某些专门的存储应用领域,例如小型存储区域网络(SAN)以及数码视像应用,往往需要高达每秒200MB的数据传输速率和强劲的联网能力,光纤通道技术的推出正适应了这一需求。同时,其超长的数据传输距离,大大方便了远程通信的技术实施。由于光纤通道技术的优越性,支持光纤界面的硬盘产品开始在市场上出现。这些产品一般是大容量硬盘,平均寻道时间短,适应于高速、高数据量的应用需求,将为中高端存储应用提供良好保证。      IEEE1394:IEEE1394又称为Firewire(火线)或P1394,它是一种高速串行总线,现有的IEEE1394标准支持 100Mbps、200Mbps和400Mbps的传输速率,将来会达到800Mbps、1600Mbps、3200Mbps甚至更高,如此高的速率使得它可以作为硬盘、DVD、CD-ROM等大容量存储设备的接口。IEEE1394将来有望取代现有的SCSI总线和IDE接口,但是由于成本较高和技术上还不够成熟等原因,目前仍然只有少量使用IEEE1394接口的产品,硬盘就更少了。      硬盘:英文“hard-disk”简称HD 。是一种储存量巨大的设备,作用是储存计算机运行时需要的数据。计算机的硬盘主要由碟片、磁头、磁头臂、磁头臂服务定位系统和底层电路板、数据保护系统以及接口等组成。计算机硬盘的技术指标主要围绕在盘片大小、盘片多少、单碟容量、磁盘转速、磁头技术、服务定位系统、接口、二级缓存、噪音和S.M.A.R.T. 等参数上。      碟片:硬盘的所有数据都存储在碟片上,碟片是由硬质合金组成的盘片,现在还出现了玻璃盘片。目前的硬盘产品内部盘片大小有:5.25,3.5,2.5和1.8英寸(后两种常用于笔记本及部分袖珍精密仪器中,现在台式机中常用3.5英寸的盘片)。      磁头:硬盘的磁头是用线圈缠绕在磁芯上制成的,最初的磁头是读写合一的,通过电流变化去感应信号的幅度。对于大多数计算机来说,在与硬盘交换数据的过程中,读*作远远快于写*作,而且读/写是两种不同特性的*作,这样就促使硬盘厂商开发一种读/写分离磁头。在1991年,IBM提出了它基于磁阻(MR)技术的读磁头技术――各项异性磁 ,磁头在和旋转的碟片相接触过程中,通过感应碟片上磁场的变化来读取数据。在硬盘中,碟片的单碟容量和磁头技术是相互制约、相互促进的。      AMR(Anisotropic Magneto Resistive,AMR):一种磁头技术,AMR技术可以支持3.3GB/平方英寸的记录密度,在1997年AMR是当时市场的主流技术。      GMR(Giant Magneto Resistive,巨磁阻):比AMR技术磁头灵敏度高2倍以上,GMR磁头是由4层导电材料和磁性材料薄膜构成的:一个传感层、一个非导电中介层、一个磁性的栓层和一个交换层。前3个层控制着磁头的电阻。在栓层中,磁场强度是固定的,并且磁场方向被相临的交换层所保持。而且自由层的磁场强度和方向则是随着转到磁头下面的磁盘表面的微小磁化区所改变的,这种磁场强度和方向的变化导致明显的磁头电阻变化,在一个固定的信号电压下面,就可以拾取供硬盘电路处理的信号。      OAW(光学辅助温式技术):希捷正在开发的OAW是未来磁头技术发展的方向,OAW技术可以在1英寸宽内写入105000以上的磁道,单碟容量有望突破36GB。单碟容量的提高不仅可以提高硬盘总容量、降低平均寻道时间,还可以降低成本、提高性能。      PRML(局部响应最大拟然,Partial Response Maximum Likelihood):除了磁头技术的日新月异之外,磁记录技术也是影响硬盘性能非常关键的一个因素。当磁记录密度达到某一程度后,两个信号之间相互干扰的现象就会非常严重。为了解决这一问题,人们在硬盘的设计中加入了PRML技术。PRML读取通道方式可以简单地分成两个部分。首先是将磁头从盘片上所读取的信号加以数字化,并将未达到标准的信号加以舍弃,而没有将信号输出。这个部分便称为局部响应。最大拟然部分则是拿数字化后的信号模型与PRML芯片本身的信号模型库加以对比,找出最接近、失真度最小的信号模型,再将这些信号重新组合而直接输出数据。使用PRML方式,不需要像脉冲检测方式那样高的信号强度,也可以避开因为信号记录太密集而产生的相互干扰的现象。磁头技术的进步,再加上目前记录材料技术和处理技术的发展,将使硬盘的存储密度提升到每平方英寸10GB以上,这将意味着可以实现40GB或者更大的硬盘容量。      间隔因子:硬盘磁道上相邻的两个逻辑扇区之间的物理扇区的数量。因为硬盘上的信息是以扇区的形式来组织的,每个扇区都有一个号码,存取*作要通过这个扇区号,所以使用一个特定的间隔因子来给扇区编号而有助于获取最佳的数据传输率。  着陆区(LZ):为使硬盘有一个起始位置,一般指定一个内层柱面作为着陆区,它使硬盘磁头在电源关闭之前停回原来的位置。着陆区不用来存储数据,因些可避免磁头在开、关电源期间紧急降落时所造成数据的损失。目前,一般的硬盘在电源关闭时会自动将磁头停在着陆区,而老式的硬盘需执行PARK命令才能将磁头归位。反应时间:指的是硬盘中的转*的工作情况。反应时间是硬盘转速的一个最直接的反应指标。5400RPM的硬盘拥有的是5.55 MS的反应时间,而7200RPM的可以达到4.17 MS。反应时间是硬盘将利用多长的时间完成第一次的转*旋转。如果我们确定一个硬盘达到120周旋转每秒的速度,那么旋转一周的时间将是1/120即 0.008333秒的时间。如果我们的硬盘是0.0041665秒每周的速度,我们也可以称这块硬盘的反应时间是4.17 ms(1ms=1/1000每秒)。      平均潜伏期(average latency):指当磁头移动到数据所在的磁道后,然后等待所要的数据块继续转动(半圈或多些、少些)到磁头下的时间,单位为毫秒(ms)。平均潜伏期是越小越好,潜伏期小代表硬盘的读取数据的等待时间短,这就等于具有更高的硬盘数据传输率。      道至道时间(single track seek):指磁头从一磁道转移至另一磁道的时间,单位为毫秒(ms)。      全程访问时间(max full seek):指磁头开始移动直到最后找到所需要的数据块所用的全部时间,单位为毫秒(ms)。      外部数据传输率:通称突发数据传输率(burst data transfer rate):指从硬盘缓冲区读取数据的速率,常以数据接口速率代替,单位为MB/S。目前主流硬盘普通采用的是Ultra ATA/66,它的最大外部数据率即为66.7MB/s,2000年推出的Ultra ATA/100,理论上最大外部数据率为100MB/s,但由于内部数据传输率的制约往往达不到这么高。      主轴转速:是指硬盘内电机主轴的转动速度,目前ATA(IDE)硬盘的主轴转速一般为5400-7200rpm,主流硬盘的转速为 7200RPM,至于SCSI硬盘的主轴转速可达一般为7200-10,000RPM,而最高转速的SCSI硬盘转速高达15,000RPM。      数据缓存:指在硬盘内部的高速存储器,在电脑中就象一块缓冲器一样将一些数据暂时性的保存起来以供读取和再读取。目前硬盘的高速缓存一般为 512KB-2MB,目前主流ATA硬盘的数据缓存为2MB,而在SCSI硬盘中最高的数据缓存现在已经达到了16MB。对于大数据缓存的硬盘在存取零散文件时具有很大的优势。      硬盘表面温度:它是指硬盘工作时产生的温度使硬盘密封壳温度上升情况。硬盘工作时产生的温度过高将影响磁头的数据读取灵敏度,因此硬盘工作表面温度较低的硬盘有更好的数据读、写稳定性。      MTBF(连续无故障时间):它指硬盘从开始运行到出现故障的最长时间,单位是小时。一般硬盘的MTBF至少在30000或40000小时。   S.M.A.R.T.(自监测、分析、报告技术):这是现在硬盘普遍采用的数据安全技术,在硬盘工作的时候监测系统对电机、电路、磁盘、磁头的状态进行分析,当有异常发生的时候就会发出警告,有的还会自动降速并备份数据。      DPS(数据保护系统):昆腾在火球八代硬盘中首次内建了DPS,在硬盘的前300MB内存放*作系统等重要信息,DPS可在系统出现问题后的90秒内自动检测恢复系统数据,若不行则用DPS软盘启动后它会自动分析故障,尽量保证数据不丢失。      数据卫士:是西部数据(WD)特有的硬盘数据安全技术,此技术可在硬盘工作的空余时间里自动每8个小时自动扫描、检测、修复盘片的各扇区。      MaxSafe:是迈拓在金钻二代上应用的技术,它的核心是将附加的ECC校验位保存在硬盘上,使读写过程都经过校验以保证数据的完整性。      DST:驱动器自我检测技术,是希捷公司在自己硬盘中采用的数据安全技术,此技术可保证保存在硬盘中数据的安全性。      DFT:驱动器健康检测技术,是IBM公司在自己硬盘中采用的数据安全技术,此技术同以上几种技术一样可极大的提高数据的安全性。      噪音与防震技术:硬盘主轴高速旋转时不可避免的产生噪音,并会因金属磨擦而产生磨损和发热问题,“液态轴承马达”就可以解决这一问题。它使用的是黏膜液油轴承,以油膜代替滚珠,可有效地降低以上问题。同时液油轴承也可有效地吸收震动,使硬盘的抗震能力由一般的一二百个G提高到了一千多G,因此硬盘的寿命与可靠性也可以得到提高。昆腾在火球七代(EX)系列之后的硬盘都应用了SPS震动保护系统;迈拓在金钻二代上应用了ShockBlock防震保护系统,他们的目的都是分散冲击能量,尽量避免磁头和盘片的撞击;希捷的金牌系列硬盘中SeaShield系统是用减震材料制成的保护软罩外加磁头臂与盘片间的防震设计来实现的。      ST-506/412接口:这是希捷开发的一种硬盘接口,首先使用这种接口的硬盘为希捷的ST-506及ST-412。ST-506接口使用起来相当简便,它不需要任何特殊的电缆及接头,但是它支持的传输速度很低,因此到了1987年左右这种接口就基本上被淘汰了,采用该接口的老硬盘容量多数都低于200MB。早期IBM PC/XT和PC/AT机器使用的硬盘就是ST-506/412硬盘或称MFM硬盘-MFM(Modified Frequency Modulation)是指一种编码方案。      ESDI接口:即(Enhanced Small Drive Interface)接口,它是迈拓公司于1983年开发的。其特点是将编解码器放在硬盘本身之中,而不是在控制卡上,理论传输速度是前面所述的ST- 506的2…4倍,一般可达到10Mbps。但其成本较高,与后来产生的IDE接口相比无优势可言,因此在九十年代后就被淘汰了。      IDE及EIDE接口:IDE(Integrated Drive Electronics)的本意实际上是指把控制器与盘体集成在一起的硬盘驱动器,我们常说的IDE接口,也叫ATA(Advanced Technology Attachment)接口,现在PC机使用的硬盘大多数都是IDE兼容的,只需用一根电缆将它们与主板或接口卡连起来就可以了。把盘体与控制器集成在一起的做法减少了硬盘接口的电缆数目与长度,数据传输的可靠性得到了增强,硬盘制造起来变得更容易,因为厂商不需要再担心自己的硬盘是否与其它厂商生产的控制器兼容,对用户而言,硬盘安装起来也更为方便。      ATA-1(IDE):ATA是最早的IDE标准的正式名称,IDE实际上是指连在硬盘接口的硬盘本身。ATA在主板上有一个插

标签: 1mr合金贴片电阻120mr采样合金电阻

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台