环境问题:
首先是在vs中安装opencv和eigen两个库
安装eigen库所推荐的链接:
VS2019正确的安装Eigen库,解决所有报错(全网最详细!!)_MaybeTnT的博客-CSDN博客_vs2019安装eigen[图片001]https://blog.csdn.net/MaybeTnT/article/details/109841378安装opencv和eigen甚至配置过程也非常相似。需要先下载相关库,然后在vs配置好。
项目-右键-属性-vc 目录-包含目录-添加相应的依赖库。
添加包含目录:
在库目录中添加:
两个库安装完成后,可以运行代码。这里我用的是视觉slam第八节光流法流法14讲。
代码如下:
#include <opencv2/opencv.hpp> #include <string> #include <chrono> #include <Eigen/Core> #include <Eigen/Dense> #include <opencv2/imgproc/types_c.h> using namespace std; using namespace cv; string file_1 = "C:\Users\ThinkPad\Desktop\LK1.png"; // first image string file_2 = "C:\Users\ThinkPad\Desktop\LK2.png"; // second image /// Optical flow tracker and interface class OpticalFlowTracker { public: OpticalFlowTracker( const Mat& img1_, const Mat& img2_, const vector<KeyPoint>& kp1_, vector<KeyPoint>& kp2_, vector<bool>& success_, bool inverse_ = true, bool has_initial_ = false) : img1(img1_), img2(img2_), kp1(kp1_), kp2(kp2_), success(success_), inverse(inverse_), has_initial(has_initial_) {} void calculateOpticalFlow(const Range& range); private: const Mat& img1; const Mat& img2; const vector<KeyPoint>& kp1; vector<KeyPoint>& kp2; vector<bool>& success; bool inverse = true; bool has_initial = false; }; /** * single level optical flow * @param [in] img1 the first image * @param [in] img2 the second image * @param [in] kp1 keypoints in img1 * @param [in|out] kp2 keypoints in img2, if empty, use initial guess in kp1 * @param [out] success true if a keypoint is tracked successfully * @param [in] inverse use inverse formulation? */ void OpticalFlowSingleLevel( const Mat& img1, const Mat& img2, const vector<KeyPoint>& kp1, vector<KeyPoint>& kp2, vector<bool>& success, bool inverse = false, bool has_initial_guess = false ); /** * multi level optical flow, scale of pyramid is set to 2 by default * the image pyramid will be create inside the function * @param [in] img1 the first pyramid * @param [in] img2 the second pyramid * @param [in] kp1 keypoints in img1 * @param [out] kp2 keypoints in img2 * @param [out] success true if a keypoint is tracked successfully * @param [in] inverse set true to enable inverse formulation */ void OpticalFlowMultiLevel( const Mat& img1, const Mat& img2, const vector<KeyPoint>& kp1, vector<KeyPoint>& kp2, vector<bool>& success, bool inverse = false ); /** * get a gray scale value from reference image (bi-linear interpolated) * @param img * @param x * @param y * @return the interpolated value of this pixel */ inline float GetPixelValue(const cv::Mat& img, float x, float y) { // boundary check if (x < 0) x = 0; if (y < 0) y = 0; if (x >= img.cols) x = img.cols - 1; if (y >= img.rows) y = img.rows - 1; uchar* data = &img.data[int(y) * img.step int(x)]; float xx = x - floor(x); float yy = y - floor(y); return float( (1 - xx) * (1 - yy) * data[0] xx * (1 - yy) * data[1] (1 - xx) * yy * data[img.step] xx * yy * data[img.step 1] ); } int main(int argc, char** argv) { // images, note they are CV_8UC1, not CV_8UC3 Mat img1 = imread(file_1, 0); Mat img2 = imread(file_2, 0); // key points, using GFTT here. vector<KeyPoint> kp1; Ptr<GFTTDetector> detector = GFTTDetector::create(500, 0.01, 20); // maximum 500 keypoints detector->detect(img1, kp1); // now lets track these key points in the second image // first use single level LK in the validation picture vector<KeyPoint> kp2_single; vector<bool> success_single; OpticalFlowSingleLevel(img1, img2, kp1, kp2_single, sucess_single);
// then test multi-level LK
vector<KeyPoint> kp2_multi;
vector<bool> success_multi;
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
OpticalFlowMultiLevel(img1, img2, kp1, kp2_multi, success_multi, true);
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "optical flow by gauss-newton: " << time_used.count() << endl;
// use opencv's flow for validation
vector<Point2f> pt1, pt2;
for (auto& kp : kp1) pt1.push_back(kp.pt);
vector<uchar> status;
vector<float> error;
t1 = chrono::steady_clock::now();
cv::calcOpticalFlowPyrLK(img1, img2, pt1, pt2, status, error);
t2 = chrono::steady_clock::now();
time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "optical flow by opencv: " << time_used.count() << endl;
// plot the differences of those functions
Mat img2_single;
cv::cvtColor(img2, img2_single, CV_GRAY2BGR);
for (int i = 0; i < kp2_single.size(); i++) {
if (success_single[i]) {
cv::circle(img2_single, kp2_single[i].pt, 2, cv::Scalar(0, 250, 0), 2);
cv::line(img2_single, kp1[i].pt, kp2_single[i].pt, cv::Scalar(0, 250, 0));
}
}
Mat img2_multi;
cv::cvtColor(img2, img2_multi, CV_GRAY2BGR);
for (int i = 0; i < kp2_multi.size(); i++) {
if (success_multi[i]) {
cv::circle(img2_multi, kp2_multi[i].pt, 2, cv::Scalar(0, 250, 0), 2);
cv::line(img2_multi, kp1[i].pt, kp2_multi[i].pt, cv::Scalar(0, 250, 0));
}
}
Mat img2_CV;
cv::cvtColor(img2, img2_CV, CV_GRAY2BGR);
for (int i = 0; i < pt2.size(); i++) {
if (status[i]) {
cv::circle(img2_CV, pt2[i], 2, cv::Scalar(0, 250, 0), 2);
cv::line(img2_CV, pt1[i], pt2[i], cv::Scalar(0, 250, 0));
}
}
cv::imshow("tracked single level", img2_single);
cv::imshow("tracked multi level", img2_multi);
cv::imshow("tracked by opencv", img2_CV);
cv::waitKey(0);
return 0;
}
void OpticalFlowSingleLevel(
const Mat& img1,
const Mat& img2,
const vector<KeyPoint>& kp1,
vector<KeyPoint>& kp2,
vector<bool>& success,
bool inverse, bool has_initial) {
kp2.resize(kp1.size());
success.resize(kp1.size());
OpticalFlowTracker tracker(img1, img2, kp1, kp2, success, inverse, has_initial);
parallel_for_(Range(0, kp1.size()),
std::bind(&OpticalFlowTracker::calculateOpticalFlow, &tracker, placeholders::_1));
}
void OpticalFlowTracker::calculateOpticalFlow(const Range& range) {
// parameters
int half_patch_size = 4;
int iterations = 10;
for (size_t i = range.start; i < range.end; i++) {
auto kp = kp1[i];
double dx = 0, dy = 0; // dx,dy need to be estimated
if (has_initial) {
dx = kp2[i].pt.x - kp.pt.x;
dy = kp2[i].pt.y - kp.pt.y;
}
double cost = 0, lastCost = 0;
bool succ = true; // indicate if this point succeeded
// Gauss-Newton iterations
Eigen::Matrix2d H = Eigen::Matrix2d::Zero(); // hessian
Eigen::Vector2d b = Eigen::Vector2d::Zero(); // bias
Eigen::Vector2d J; // jacobian
for (int iter = 0; iter < iterations; iter++) {
if (inverse == false) {
H = Eigen::Matrix2d::Zero();
b = Eigen::Vector2d::Zero();
}
else {
// only reset b
b = Eigen::Vector2d::Zero();
}
cost = 0;
// compute cost and jacobian
for (int x = -half_patch_size; x < half_patch_size; x++)
for (int y = -half_patch_size; y < half_patch_size; y++) {
double error = GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y) -
GetPixelValue(img2, kp.pt.x + x + dx, kp.pt.y + y + dy);; // Jacobian
if (inverse == false) {
J = -1.0 * Eigen::Vector2d(
0.5 * (GetPixelValue(img2, kp.pt.x + dx + x + 1, kp.pt.y + dy + y) -
GetPixelValue(img2, kp.pt.x + dx + x - 1, kp.pt.y + dy + y)),
0.5 * (GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y + 1) -
GetPixelValue(img2, kp.pt.x + dx + x, kp.pt.y + dy + y - 1))
);
}
else if (iter == 0) {
// in inverse mode, J keeps same for all iterations
// NOTE this J does not change when dx, dy is updated, so we can store it and only compute error
J = -1.0 * Eigen::Vector2d(
0.5 * (GetPixelValue(img1, kp.pt.x + x + 1, kp.pt.y + y) -
GetPixelValue(img1, kp.pt.x + x - 1, kp.pt.y + y)),
0.5 * (GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y + 1) -
GetPixelValue(img1, kp.pt.x + x, kp.pt.y + y - 1))
);
}
// compute H, b and set cost;
b += -error * J;
cost += error * error;
if (inverse == false || iter == 0) {
// also update H
H += J * J.transpose();
}
}
// compute update
Eigen::Vector2d update = H.ldlt().solve(b);
if (std::isnan(update[0])) {
// sometimes occurred when we have a black or white patch and H is irreversible
cout << "update is nan" << endl;
succ = false;
break;
}
if (iter > 0 && cost > lastCost) {
break;
}
// update dx, dy
dx += update[0];
dy += update[1];
lastCost = cost;
succ = true;
if (update.norm() < 1e-2) {
// converge
break;
}
}
success[i] = succ;
// set kp2
kp2[i].pt = kp.pt + Point2f(dx, dy);
}
}
void OpticalFlowMultiLevel(
const Mat& img1,
const Mat& img2,
const vector<KeyPoint>& kp1,
vector<KeyPoint>& kp2,
vector<bool>& success,
bool inverse) {
// parameters
int pyramids = 4;
double pyramid_scale = 0.5;
double scales[] = { 1.0, 0.5, 0.25, 0.125 };
// create pyramids
chrono::steady_clock::time_point t1 = chrono::steady_clock::now();
vector<Mat> pyr1, pyr2; // image pyramids
for (int i = 0; i < pyramids; i++) {
if (i == 0) {
pyr1.push_back(img1);
pyr2.push_back(img2);
}
else {
Mat img1_pyr, img2_pyr;
cv::resize(pyr1[i - 1], img1_pyr,
cv::Size(pyr1[i - 1].cols * pyramid_scale, pyr1[i - 1].rows * pyramid_scale));
cv::resize(pyr2[i - 1], img2_pyr,
cv::Size(pyr2[i - 1].cols * pyramid_scale, pyr2[i - 1].rows * pyramid_scale));
pyr1.push_back(img1_pyr);
pyr2.push_back(img2_pyr);
}
}
chrono::steady_clock::time_point t2 = chrono::steady_clock::now();
auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "build pyramid time: " << time_used.count() << endl;
// coarse-to-fine LK tracking in pyramids
vector<KeyPoint> kp1_pyr, kp2_pyr;
for (auto& kp : kp1) {
auto kp_top = kp;
kp_top.pt *= scales[pyramids - 1];
kp1_pyr.push_back(kp_top);
kp2_pyr.push_back(kp_top);
}
for (int level = pyramids - 1; level >= 0; level--) {
// from coarse to fine
success.clear();
t1 = chrono::steady_clock::now();
OpticalFlowSingleLevel(pyr1[level], pyr2[level], kp1_pyr, kp2_pyr, success, inverse, true);
t2 = chrono::steady_clock::now();
auto time_used = chrono::duration_cast<chrono::duration<double>>(t2 - t1);
cout << "track pyr " << level << " cost time: " << time_used.count() << endl;
if (level > 0) {
for (auto& kp : kp1_pyr)
kp.pt /= pyramid_scale;
for (auto& kp : kp2_pyr)
kp.pt /= pyramid_scale;
}
}
for (auto& kp : kp2_pyr)
kp2.push_back(kp);
}
其中在运行过程中出现的问题内存异常
提示:
有未经处理的异常:Microsoft C++异常:cv::Exception,位于内存位置******处
解决方式是图片的路径存在问题:
string file_1 = "C:\Users\ThinkPad\Desktop\LK1.png"; ?// first image string file_2 = "C:\Users\ThinkPad\Desktop\LK2.png"; ?// second image
需要换成绝对路径就可以了。并且绝对路径是两个斜杠并非一个,如图所示:
运行结果如图:
由于并行化程序在每次运行时的表现不尽相同,在你们的运行结果中,这些数字不会精确相同,在我的结果中,反而是opencv的运行速度比高斯牛顿法更快。
多层光流:
opencv光流法:
从效果中可以看出,单层光流效果差一点,多层光流与opencv效果相当。考虑时间我的opencv效果更好。