资讯详情

软工比较结构化方法和面向对象方法的异同_海量、多维数据让人抓狂?高效搜索方法看这里...

全文共 字,预计学习时间 分钟或更长
6c54f5d35c6bbe232b0b80032e17bd7b.png

人与世界万物的互动会产生大量的时空数据。那么,当我们需要随时调用过去的数据时,改怎么办?尤其是面对各种海量、多维度的数据库,如果没有高效的搜索方法,我们只能望洋兴叹、束手无策。

别担心,本文将使用详细的代码,携手传授高效的搜索技巧!

对象数据可分为静态数据(相对静态,如建筑)和动态数据(如人类活动和物联网传感器活动)两种类型。

搜索时空快照

有些对象以相对较低的频率生成数据。例如,建筑物、道路等惰性物体在几年内可能不会改变。如果将为这些对象生成的数据写入数据库,并根据时间范围查询数据(如2017-07-01-2017-07-02),则可能找不到与这些对象相关的数据。原因很简单,数据库在此期间根本没有相关的数据输入。

搜索时空行为数据

时空行为数据是指从人类活动等动态对象中获取数据。

例如,分析特定地区特定时间段内某一人群的特征,或分析大学周围人群在工作日和周末的差异。

本文不讨论时空快照。现在,让我们来看看如何搜索时空行为数据。

时空行为数据包括时间、空间和对象三个属性。

非结构化索引:

create table test(  id int8,  crt_time timestamp, -- Time  pos geometry, -- Location  obj jsonb -- Object description );

除了应用于JSON,对象描述也可以使用结构化数据。

create table test(  id int8,  crt_time timestamp, -- Time  pos geometry, -- Location  c1 int, -- Some property examples  c2 int,  c3 text,  c4 float8,  c5 int,  c6 date,  c7 text,  c8 int,  c9 int,  c10 int );

时空行为数据SQL查询实例

select * from test  where  pos  ? < ?  and crt_time between ? and ?  and ( (c1 = ? and c2 between ? and ?) or c10=?)  ...  ;

考虑使用以下知识:

时间序列BRIN索引

crt_time字段是时间序列字段,表示生成数据的时间。PostgreSQL存储与字段值具有很强的线性相关性。

因此,BRIN索引非常合适。

使用BRIN索引取代分区表TPC-H测试。大规模搜索的性能甚至比使用分区表时更好。

create index idx_test_1 on test using brin(crt_time);

空间索引

显然,空间检索需要空间索引。PostgreSQL空间检索可以用三种方法来实现。

create index idx_test_2 on test using gist(pos);

该索引支持空间KNN搜索和确定空间位置等功能。

create index idx_test_2 on test using spgist(pos);

该索引支持空间KNN搜索和确定空间位置等功能。

(将经度和纬度转换为Geohash并为hash值创建B-tree索引)。只需使用表达式索引。

create index idx_test_3 on test using btree( ST_GeoHash(pos,15) );

该索引支持前缀搜索(它可以实现编码地理信息网格中包含的关系)。它是一个需要二次过滤的损坏索引。

GiST和SPGiST空间索引能找到准确的地理位置信息,优于GEOHASH索引。但是,在查询信息时要特别注意。

GIN 索引

该索引类型的目标是对象属性字段JSONB或多个结构化对象属性字段。只需使用GIN索引。

例如:

create extension btree_gin;

非结构化索引:

create index idx_test_4 on test using gin( obj );

结构索引:

create index idx_test_4 on test using gin( c1,c2,c3,c4,c5,c6,c7,c8,c9 );

BitmapAnd和BitmapOr

在上一节中,可以根据数据类型和查询要求选择不同的查询维度。

但是,这些索引能同时使用吗? PostgreSQL提供多个索引bitmapAnd及bitmapOr接口。它们可以结合多个索引来减少需要扫描的数据库数量。

Heap, one square = one page:  ---------------------------------------------  |c____u_____X___u___X_________u___cXcc______u_|  ---------------------------------------------  Rows marked c match customers pkey condition. Rows marked u match username condition. Rows marked X match both conditions. Bitmap scan from customers_pkey:  ---------------------------------------------  |100000000001000000010000000000000111100000000| bitmap 1  ---------------------------------------------  One bit per heap page, in the same order as the heap Bts 1 when condition matches, 0 if not Bitmap scan from ix_cust_username: +---------------------------------------------+ |000001000001000100010000000001000010000000010| bitmap 2 +---------------------------------------------+ Once the bitmaps are created a bitwise AND is performed on them: +---------------------------------------------+ |100000000001000000010000000000000111100000000| bitmap 1 |000001000001000100010000000001000010000000010| bitmap 2  &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& |000000000001000000010000000000000010000000000| Combined bitmap +-----------+-------+--------------+----------+  | | |  v v v Used to scan the heap only for matching pages: +---------------------------------------------+ |___________X_______X______________X__________| +---------------------------------------------+ The bitmap heap scan then seeks to the start of each page and reads the page: +---------------------------------------------+ |___________X_______X______________X__________| +---------------------------------------------+ seek------->^seek-->^seek--------->^  | | |  ------------------------  only these pages read

例如:

select * from test where  c1 ...  and crt_time between ? and ?  and test->> c1 in (?, ? ...);

根据统计数据自动使用适当的索引。如果需要,bitmapAnd和bitmapOr将在多个索引上自动执行合并扫描。跳过不需要扫描的页面,重新检查命中的页面。

堆表存储分级和分区

存储可以分为一级分区或多级分区:

例如,按时间划分。

create table test(  id int8,  crt_time timestamp, -- Time  pos geometry, -- Location  obj jsonb -- Object description ) PARTITION BY range (crt_time) ; create table test_201701 PARTITION OF test for values FROM ( 2017-01-01 ) TO ( 2017-02-01 ); ......

例如,先按时间分区,然后按Geohash划分。

create table test_201701 PARTITION OF test for values FROM ( 2017-01-01 ) TO ( 2017-02-01 ) partition by range(st_geohash(pos,15)); ... create table test_201701_prefix1 PARTITION OF test for values FROM ( xxxx1 ) TO ( xxxx2 ); -- Generate BOX (GRID) on a map, find corresponding boundaries and use -- boundaries as partitioning conditions

使用分区时,如果查询条件包括分区键(如时间和空间范围),相应的分区将自动定位,这即为需要扫描的数据量。

创建面向对象属性的GIN索引,以实现高效查询。

索引分级与分区

与数据一样,索引在不使用分区表的情况下也支持分区逻辑。

空间索引+时间分区

create index idx_20170101 on tbl using gist (pos) where crt_time between 2017-01-01 and 2017-01-02 ; ... create index idx_20170102 on tbl using gist (pos) where crt_time between 2017-01-02 and 2017-01-03 ; ...

通过使用前述分区索引,可以在输入时间范围后快速定位目标数据,执行空间搜索。

select * from tbl  where crt_time between 2017-01-01 and 2017-01-02 -- Time  and (pos  ?) < ? -- Distance to a point to be searched for  and ? -- Other conditions  order by pos  ? -- Sort by distance  limit ?; -- Number of results to be returned

可以使用更多的索引分区,比如用作搜索条件和商店类型的维度(对象属性)(假设它是可枚举的或在范围相对较小的情况下)。

create index idx_20170101_mod0 on tbl using gist (pos) where crt_time between 2017-01-01 and 2017-01-02 and dtype=0; ... create index idx_20170101_mod1 on tbl using gist (pos) where crt_time between 2017-01-01 and 2017-01-02 and dtype=1; ...

通过使用前面的分区索引,在输入时间范围或特定条件以执行空间搜索后,可以快速定位目标数据。

select * from tbl  where crt_time between 2017-01-01 and 2017-01-02 -- Time  and (pos  ?) < ? -- Distance to a point to be searched for  and dtype=0 -- Object condition  and ? -- Other conditions  order by pos  ? -- Sort by distance  limit ?; -- Number of results to be returned

请注意,前面的SQL查询可以实现最佳性能优化。

索引组织形式(或索引结构)可以由逻辑分区重新构造,可以用上述类似的索引创建方法覆盖所有条件。

CTID相交阵列连接扫描

如前所述,BitmapAnd和BitmapOr合并扫描是在多个索引或GIN索引中自动执行的。事实上,这种扫描也可以在SQL中显式执行。

每个条件渗透对应的CTID。

使用Intersect或Union生成满足总体需求的CTID。(Intersect对应于“and”条件;union对应于“or”条件。)

生成一个ctid数组。

1. 创建对象提要数据表

postgres=# create table tbl (id int, info text, crt_time timestamp, pos point, c1 int , c2 int, c3 int ); CREATE TABLE

2. 将5000万条测试数据写入表中

postgres=# insert into tbl select generate_series(1,50000000), md5(random()::text), clock_timestamp(), point(180-random()*180, 90-random()*90), random()*10000, random()*5000, random()*1000; INSERT 0 50000000

3. 创建对象索引

postgres=# create index idx_tbl_1 on tbl using gin (info, c1, c2, c3); CREATE INDEX

4. 创建时间索引

postgres=# create index idx_tbl_2 on tbl using btree (crt_time); CREATE INDEX

5. 创建空间索引

postgres=# create index idx_tbl_3 on tbl using gist (pos); CREATE INDEX

6. 生成数据布局以方便后续查询

postgres=# select min(crt_time),max(crt_time),count(*) from tbl;  min | max | count ----------------------------+----------------------------+----------  2017-07-22 17:59:34.136497 | 2017-07-22 18:01:27.233688 | 50000000 (1 row)

7. 创建一个极限KNN查询函数

create or replace function ff(point, float8, int) returns setof tid as $declare  v_rec record;  v_limit int := $3; begin  set local enable_seqscan=off; -- Force index that exits when scanned rows reach a specific number  for v_rec in  select *,  (pos  $1) as dist,  ctid  from tbl  order by pos  $1  loop  if v_limit <=0 then  -- raise notice "Sufficient data obtained"  return;  end if;  if v_rec.dist > $2 then  -- raise notice "All matching points returned"  return;  else  return next v_rec.ctid;  end if;  v_limit := v_limit -1;  end loop; end; $ language plpgsql strict volatile; postgres=# select * from ff(point (100,100) ,100,100) ;  ff -------------  (407383,11)  (640740,9)  (26073,51)  (642750,34) ... (100 rows) Time: 1.061 ms

8. CTID合并检索

显示符合以下条件的记录

( c1 in (1,2,3,4,100,200,99,88,77,66,55)  or c2 < 10 )  and pos  point (0,0) < 5  and crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40 ;

首先,分别查看每个条件,找匹配一个条件的记录数量,以及在索引扫描上所花时长。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where c1 in (1,2,3,4,100,200,99,88,77,66,55);  QUERY PLAN -------------------------------------------------------------------------------------------------------------------------------  Bitmap Heap Scan on postgres.tbl (cost=820.07..65393.94 rows=54151 width=73) (actual time=23.842..91.911 rows=54907 loops=1)  Output: id, info, crt_time, pos, c1, c2, c3  Recheck Cond: (tbl.c1 = ANY ( {1,2,3,4,100,200,99,88,77,66,55} ::integer[]))  Heap Blocks: exact=52778  Buffers: shared hit=52866  -> Bitmap Index Scan on idx_tbl_1 (cost=0.00..806.54 rows=54151 width=0) (actual time=14.264..14.264 rows=54907 loops=1)  Index Cond: (tbl.c1 = ANY ( {1,2,3,4,100,200,99,88,77,66,55} ::integer[]))  Buffers: shared hit=88  Planning time: 0.105 ms  Execution time: 94.606 ms (10 rows)

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where c2<10;  QUERY PLAN ---------------------------------------------------------------------------------------------------------------------------------  Bitmap Heap Scan on postgres.tbl (cost=835.73..112379.10 rows=99785 width=73) (actual time=69.243..179.388 rows=95147 loops=1)  Output: id, info, crt_time, pos, c1, c2, c3  Recheck Cond: (tbl.c2 < 10)  Heap Blocks: exact=88681  Buffers: shared hit=88734  -> Bitmap Index Scan on idx_tbl_1 (cost=0.00..810.79 rows=99785 width=0) (actual time=53.612..53.612 rows=95147 loops=1)  Index Cond: (tbl.c2 < 10)  Buffers: shared hit=53  Planning time: 0.094 ms  Execution time: 186.201 ms (10 rows)

(为快速获得结果,PostgreSQL使用位图进行合并扫描)

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl where c1 in (1,2,3,4,100,200,99,88,77,66,55) or c2 <10;  QUERY PLAN ------------------------------------------------------------------------------------------------------------------------------------  Bitmap Heap Scan on postgres.tbl (cost=1694.23..166303.58 rows=153828 width=73) (actual time=98.988..266.852 rows=149930 loops=1)  Output: id, info, crt_time, pos, c1, c2, c3  Recheck Cond: ((tbl.c1 = ANY ( {1,2,3,4,100,200,99,88,77,66,55} ::integer[])) OR (tbl.c2 < 10))  Heap Blocks: exact=134424  Buffers: shared hit=134565  -> BitmapOr (cost=1694.23..1694.23 rows=153936 width=0) (actual time=73.763..73.763 rows=0 loops=1)  Buffers: shared hit=141  -> Bitmap Index Scan on idx_tbl_1 (cost=0.00..806.54 rows=54151 width=0) (actual time=16.733..16.733 rows=54907 loops=1)  Index Cond: (tbl.c1 = ANY ( {1,2,3,4,100,200,99,88,77,66,55} ::integer[]))  Buffers: shared hit=88  -> Bitmap Index Scan on idx_tbl_1 (cost=0.00..810.79 rows=99785 width=0) (actual time=57.029..57.029 rows=95147 loops=1)  Index Cond: (tbl.c2 < 10)  Buffers: shared hit=53  Planning time: 0.149 ms  Execution time: 274.548 ms (15 rows)

(即使运用出色的KNN性能优化,仍然需要耗费195毫秒)。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from ff(point (0,0) ,5,1000000);  QUERY PLAN ----------------------------------------------------------------------------------------------------------------------  Function Scan on postgres.ff (cost=0.25..10.25 rows=1000 width=6) (actual time=188.563..192.114 rows=60687 loops=1)  Output: ff  Function Call: ff( (0,0) ::point, 5 ::double precision, 1000000)  Buffers: shared hit=61296  Planning time: 0.029 ms  Execution time: 195.097 ms (6 rows)

让我们看看不使用KNN优化需要多长时间。

结果非常令人惊讶——极限优化性能提高了一个数量级。

使用所有索引逐个扫描数据条件,得到ctid并执行ctid扫描。

现在,让我们来分解这个过程:

首先,让我们看看时间和对象属性的合并查询,成果非常惊人。使用位图BitmapOr时,查询可以跳过大多数数据块,并且扫描时间比单索引扫描要短。

注意,在此步骤中记录的数量减少到7,847条。

postgres=# explain (analyze,verbose,timing,costs,buffers) select ctid from tbl  where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40  and (  c1 in (1,2,3,4,100,200,99,88,77,66,55)  or  c2 < 10  );  QUERY PLAN -----------------------------------------------------------------------------------------------------------------------------------------------------------------------------  Bitmap Heap Scan on postgres.tbl (cost=35025.85..44822.94 rows=7576 width=6) (actual time=205.577..214.821 rows=7847 loops=1)  Output: ctid  Recheck Cond: (((tbl.c1 = ANY ( {1,2,3,4,100,200,99,88,77,66,55} ::integer[])) OR (tbl.c2 < 10)) AND (tbl.crt_time >= 2017-07-22 17:59:34 ::timestamp without time zone) AND (tbl.crt_time <= 2017-07-22 17:59:40 ::timestamp without time zone))  Heap Blocks: exact=6983  Buffers: shared hit=14343  -> BitmapAnd (cost=35025.85..35025.85 rows=7581 width=0) (actual time=204.048..204.048 rows=0 loops=1)  Buffers: shared hit=7360  -> BitmapOr (cost=1621.11..1621.11 rows=153936 width=0) (actual time=70.279..70.279 rows=0 loops=1)  Buffers: shared hit=141  -> Bitmap Index Scan on idx_tbl_1 (cost=0.00..806.54 rows=54151 width=0) (actual time=15.860..15.860 rows=54907 loops=1)  Index Cond: (tbl.c1 = ANY ( {1,2,3,4,100,200,99,88,77,66,55} ::integer[]))  Buffers: shared hit=88  -> Bitmap Index Scan on idx_tbl_1 (cost=0.00..810.79 rows=99785 width=0) (actual time=54.418..54.418 rows=95147 loops=1)  Index Cond: (tbl.c2 < 10)  Buffers: shared hit=53  -> Bitmap Index Scan on idx_tbl_2 (cost=0.00..33402.60 rows=2462443 width=0) (actual time=127.101..127.101 rows=2640751 loops=1)  Index Cond: ((tbl.crt_time >= 2017-07-22 17:59:34 ::timestamp without time zone) AND (tbl.crt_time <= 2017-07-22 17:59:40 ::timestamp without time zone))  Buffers: shared hit=7219  Planning time: 0.203 ms  Execution time: 216.697 ms (20 rows)

然后,看KNN的扫描时间:

注意,60,687条记录满足KNN距离条件,所以接下来将解释CTID合并扫描与原始扫描之间的性能比较。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from ff(point (0,0) ,5,1000000);  QUERY PLAN ----------------------------------------------------------------------------------------------------------------------  Function Scan on postgres.ff (cost=0.25..10.25 rows=1000 width=6) (actual time=188.563..192.114 rows=60687 loops=1)  Output: ff  Function Call: ff( (0,0) ::point, 5 ::double precision, 1000000)  Buffers: shared hit=61296  Planning time: 0.029 ms  Execution time: 195.097 ms (6 rows)

最后,将这些片段合并到ctid中。

select * from ff(point (0,0) ,5,1000000)  intersect select ctid from tbl  where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40  and (  c1 in (1,2,3,4,100,200,99,88,77,66,55)  or  c2 < 10  );  ff ------------  (1394,8)  (3892,50)  (6124,45)  (7235,8)  (7607,45)  (11540,8)  (13397,31)  (14266,36)  (18149,7)  (19256,44)  (24671,62)  (26525,64)  (30235,48) (13 rows) Time: 463.012 ms

取得最终纪录。

select * from tbl where ctid = any ( array( -- array start select * from ff(point (0,0) ,5,1000000) intersect select ctid from tbl  where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40  and (  c1 in (1,2,3,4,100,200,99,88,77,66,55)  or  c2 < 10  ) ) -- array end );  id | info | crt_time | pos | c1 | c2 | c3 ---------+----------------------------------+----------------------------+----------------------------------------+------+------+-----  104558 | c4699c933d4e2d2a10d828c4ff0b3362 | 2017-07-22 17:59:34.362508 | (4.20534582808614,2.43749532848597) | 99 | 4858 | 543  291950 | 1c2901689ab1eb7653d8ad972f7aa376 | 2017-07-22 17:59:34.776808 | (2.5384977646172,1.09820357523859) | 3 | 2131 | 360  459345 | 9e46548f29d914019ce53a589be8ebac | 2017-07-22 17:59:35.148699 | (0.715781506150961,3.1486327573657) | 1 | 1276 | 8  542633 | c422d6137f9111d5c2dc723b40c7023f | 2017-07-22 17:59:35.334278 | (0.0631888210773468,2.2334903664887) | 4968 | 3 | 245  570570 | fc57bfc6b7781d89b17c90417bd306f7 | 2017-07-22 17:59:35.39653 | (3.14926156774163,1.04107855819166) | 88 | 2560 | 561  865508 | 34509c7f7640afaf288a5e1d38199701 | 2017-07-22 17:59:36.052573 | (3.12869547866285,2.34822122845799) | 2 | 65 | 875  1004806 | afe9f88cbebf615a7ae5f41180c4b33f | 2017-07-22 17:59:36.362027 | (1.13972157239914,3.28763140831143) | 3 | 1639 | 208  1069986 | 6b9f27bfde993fb0bae3336ac010af7a | 2017-07-22 17:59:36.507775 | (4.51995821669698,2.08761331625283) | 2 | 200 | 355  1361182 | 7c4c1c208c2b2b21f00772c43955d238 | 2017-07-22 17:59:37.155127 | (1.7334086727351,2.18367457855493) | 9742 | 0 | 232  1444244 | 41bf6f8e4b89458c13fb408a7db05284 | 2017-07-22 17:59:37.339594 | (0.52773853763938,2.16670122463256) | 1 | 2470 | 820  1850387 | 6e0011c6db76075edd2aa7f81ec94129 | 2017-07-22 17:59:38.243091 | (0.0168232340365648,0.420973123982549) | 100 | 4395 | 321  1989439 | 6211907ac254a4a3ca54f90822a2095e | 2017-07-22 17:59:38.551637 | (0.0274275150150061,0.490507003851235) | 1850 | 5 | 74  2267673 | 898fdd54dcc5b14c27cf1c8b9afe2471 | 2017-07-22 17:59:39.170035 | (0.394239127635956,2.86229319870472) | 2892 | 6 | 917 (13 rows) Time: 462.715 ms

过程花费462毫秒。

9. 测试原始SQL查询的性能: PostgreSQL Multi-Index BitmapAnd and BitmapOr跳过扫描

直接编写SQL查询,而不是使用多CTID扫描。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from tbl  where  crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40  and (  c1 in (1,2,3,4,100,200,99,88,77,66,55)  or  c2 < 10  )  and  pos  point (0,0) < 5;  Bitmap Heap Scan on postgres.tbl (cost=35022.06..44857.06 rows=2525 width=73) (actual time=205.542..214.547 rows=13 loops=1)  Output: id, info, crt_time, pos, c1, c2, c3  Recheck Cond: (((tbl.c1 = ANY ( {1,2,3,4,100,200,99,88,77,66,55} ::integer[])) OR (tbl.c2 < 10)) AND (tbl.crt_time >= 2017-07-22 17:59:34 ::timestamp without time zone) AND (tbl.crt_time <= 2017-07-22 17:59:40 ::timestamp without time zone))  Filter: ((tbl.pos  (0,0) ::point) < 5 ::double precision)  Rows Removed by Filter: 7834  Heap Blocks: exact=6983  Buffers: shared hit=14343  -> BitmapAnd (cost=35022.06..35022.06 rows=7581 width=0) (actual time=203.620..203.620 rows=0 loops=1)  Buffers: shared hit=7360  -> BitmapOr (cost=1618.58..1618.58 rows=153936 width=0) (actual time=71.660..71.660 rows=0 loops=1)  Buffers: shared hit=141  -> Bitmap Index Scan on idx_tbl_1 (cost=0.00..806.54 rows=54151 width=0) (actual time=14.861..14.861 rows=54907 loops=1)  Index Cond: (tbl.c1 = ANY ( {1,2,3,4,100,200,99,88,77,66,55} ::integer[]))  Buffers: shared hit=88  -> Bitmap Index Scan on idx_tbl_1 (cost=0.00..810.79 rows=99785 width=0) (actual time=56.797..56.797 rows=95147 loops=1)  Index Cond: (tbl.c2 < 10)  Buffers: shared hit=53  -> Bitmap Index Scan on idx_tbl_2 (cost=0.00..33402.60 rows=2462443 width=0) (actual time=125.255..125.255 rows=2640751 loops=1)  Index Cond: ((tbl.crt_time >= 2017-07-22 17:59:34 ::timestamp without time zone) AND (tbl.crt_time <= 2017-07-22 17:59:40 ::timestamp without time zone))  Buffers: shared hit=7219  Planning time: 0.160 ms  Execution time: 216.797 ms (22 rows)

性能如预期的那样好,之前解释过原因。KNN条件以外的条件已经将结果收敛到7,000条记录,因此没有必要使用包含KNN条件的索引。(即使使用KNN索引也需要195毫秒,因为有60,687条记录满足KNN条件。)

校验结果:

select * from tbl  where  crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40  and (  c1 in (1,2,3,4,100,200,99,88,77,66,55)  or  c2 < 10  )  and  pos  point (0,0) < 5;  id | info | crt_time | pos | c1 | c2 | c3 ---------+----------------------------------+----------------------------+----------------------------------------+------+------+-----  104558 | c4699c933d4e2d2a10d828c4ff0b3362 | 2017-07-22 17:59:34.362508 | (4.20534582808614,2.43749532848597) | 99 | 4858 | 543  291950 | 1c2901689ab1eb7653d8ad972f7aa376 | 2017-07-22 17:59:34.776808 | (2.5384977646172,1.09820357523859) | 3 | 2131 | 360  459345 | 9e46548f29d914019ce53a589be8ebac | 2017-07-22 17:59:35.148699 | (0.715781506150961,3.1486327573657) | 1 | 1276 | 8  542633 | c422d6137f9111d5c2dc723b40c7023f | 2017-07-22 17:59:35.334278 | (0.0631888210773468,2.2334903664887) | 4968 | 3 | 245  570570 | fc57bfc6b7781d89b17c90417bd306f7 | 2017-07-22 17:59:35.39653 | (3.14926156774163,1.04107855819166) | 88 | 2560 | 561  865508 | 34509c7f7640afaf288a5e1d38199701 | 2017-07-22 17:59:36.052573 | (3.12869547866285,2.34822122845799) | 2 | 65 | 875  1004806 | afe9f88cbebf615a7ae5f41180c4b33f | 2017-07-22 17:59:36.362027 | (1.13972157239914,3.28763140831143) | 3 | 1639 | 208  1069986 | 6b9f27bfde993fb0bae3336ac010af7a | 2017-07-22 17:59:36.507775 | (4.51995821669698,2.08761331625283) | 2 | 200 | 355  1361182 | 7c4c1c208c2b2b21f00772c43955d238 | 2017-07-22 17:59:37.155127 | (1.7334086727351,2.18367457855493) | 9742 | 0 | 232  1444244 | 41bf6f8e4b89458c13fb408a7db05284 | 2017-07-22 17:59:37.339594 | (0.52773853763938,2.16670122463256) | 1 | 2470 | 820  1850387 | 6e0011c6db76075edd2aa7f81ec94129 | 2017-07-22 17:59:38.243091 | (0.0168232340365648,0.420973123982549) | 100 | 4395 | 321  1989439 | 6211907ac254a4a3ca54f90822a2095e | 2017-07-22 17:59:38.551637 | (0.0274275150150061,0.490507003851235) | 1850 | 5 | 74  2267673 | 898fdd54dcc5b14c27cf1c8b9afe2471 | 2017-07-22 17:59:39.170035 | (0.394239127635956,2.86229319870472) | 2892 | 6 | 917 (13 rows)

假设前面的查询条件保持不变,使用分区索引来测试性能。

这是为了演示分区索引的极端效果。在实际场景中,集合级别可能没有那么高(例如按天集合或按ID散列集合)。只要集合是可能的,就可以展现出色的性能。

postgres=# create index idx_tbl_4 on tbl using gist (pos) where crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40  and (  c1 in (1,2,3,4,100,200,99,88,77,66,55)  or  c2 < 10  ) ; CREATE INDEX Time: 8359.330 ms (00:08.359)

重构极值KNN优化函数

create or replace function ff(point, float8, int) returns setof record as $declare  v_rec record;  v_limit int := $3; begin  set local enable_seqscan=off; -- Force index that exits when scanned rows reach a specific number  for v_rec in  select *,  (pos  $1) as dist  from tbl  where  crt_time between 2017-07-22 17:59:34 and 2017-07-22 17:59:40  and (  c1 in (1,2,3,4,100,200,99,88,77,66,55)  or  c2 < 10  )  order by pos  $1  loop  if v_limit <=0 then  -- raise notice "Sufficient data obtained"  return;  end if;  if v_rec.dist > $2 then  -- raise notice "All matching points returned"  return;  else  return next v_rec;  end if;  v_limit := v_limit -1;  end loop; end; $ language plpgsql strict volatile;

查询性能:

postgres=# select * from ff(point (0,0) , 5, 10000000) as t(id int, info text, crt_time timestamp, pos point, c1 int, c2 int, c3 int, dist float8);  id | info | crt_time | pos | c1 | c2 | c3 | dist ---------+----------------------------------+----------------------------+----------------------------------------+------+------+-----+-------------------  1850387 | 6e0011c6db76075edd2aa7f81ec94129 | 2017-07-22 17:59:38.243091 | (0.0168232340365648,0.420973123982549) | 100 | 4395 | 321 | 0.421309141034319  1989439 | 6211907ac254a4a3ca54f90822a2095e | 2017-07-22 17:59:38.551637 | (0.0274275150150061,0.490507003851235) | 1850 | 5 | 74 | 0.49127323294376  1444244 | 41bf6f8e4b89458c13fb408a7db05284 | 2017-07-22 17:59:37.339594 | (0.52773853763938,2.16670122463256) | 1 | 2470 | 820 | 2.23004532710301  542633 | c422d6137f9111d5c2dc723b40c7023f | 2017-07-22 17:59:35.334278 | (0.0631888210773468,2.2334903664887) | 4968 | 3 | 245 | 2.23438404136508  291950 | 1c2901689ab1eb7653d8ad972f7aa376 | 2017-07-22 17:59:34.776808 | (2.5384977646172,1.09820357523859) | 3 | 2131 | 360 | 2.76586731309247  1361182 | 7c4c1c208c2b2b21f00772c43955d238 | 2017-07-22 17:59:37.155127 | (1.7334086727351,2.18367457855493) | 9742 | 0 | 232 | 2.78803520274409  2267673 | 898fdd54dcc5b14c27cf1c8b9afe2471 | 2017-07-22 17:59:39.170035 | (0.394239127635956,2.86229319870472) | 2892 | 6 | 917 | 2.88931598221975  459345 | 9e46548f29d914019ce53a589be8ebac | 2017-07-22 17:59:35.148699 | (0.715781506150961,3.1486327573657) | 1 | 1276 | 8 | 3.22896754478952  570570 | fc57bfc6b7781d89b17c90417bd306f7 | 2017-07-22 17:59:35.39653 | (3.14926156774163,1.04107855819166) | 88 | 2560 | 561 | 3.31688000783581  1004806 | afe9f88cbebf615a7ae5f41180c4b33f | 2017-07-22 17:59:36.362027 | (1.13972157239914,3.28763140831143) | 3 | 1639 | 208 | 3.47958123047986  865508 | 34509c7f7640afaf288a5e1d38199701 | 2017-07-22 17:59:36.052573 | (3.12869547866285,2.34822122845799) | 2 | 65 | 875 | 3.91188935630676  104558 | c4699c933d4e2d2a10d828c4ff0b3362 | 2017-07-22 17:59:34.362508 | (4.20534582808614,2.43749532848597) | 99 | 4858 | 543 | 4.86069100130757  1069986 | 6b9f27bfde993fb0bae3336ac010af7a | 2017-07-22 17:59:36.507775 | (4.51995821669698,2.08761331625283) | 2 | 200 | 355 | 4.97877009299311 (13 rows) Time: 0.592 ms

太棒了!查询时间从200毫秒减少到1毫秒以内。

优化方法回顾:

1. 为不同的数据类型构建不同的索引。

例如,对空间使用GiST或SP-GiST索引,对时间使用B树或BRIN索引,对多个对象属性使用GIN索引。索引的目的是缩小数据扫描的范围。

2. 方法五提到数据分区。

数据分区的目的是有意地组织数据,这意味着有意地组织数据以满足搜索需求。例如,如果时间是必需的查询条件或公共查询条件,那么可以按时间(分区)分割数据,以减少需要扫描的数据量。

3. 方法六描述了索引分区。

目的类似于方法五。方法五和方法六的区别在于分区在索引级别使用,因此当执行索引扫描时,数据命中率会直接提高。

4.方法七中的ctid合并扫描类似于PostgreSQL中的多索引bitmapAnd或bitmapOr扫描。

bitmapAnd/bitmapOr跳过不需要扫描的块,方法七中的ctid合并扫描跳过不需要扫描的行。

合并从多个索引扫描获得的ctid。跳过不需要扫描的行数。

如果当其他条件为“AND”时,过滤条件可以显著减少ctid(记录),则没有必要使用ctid合并扫描。相反,使用FILTER作为另一个条件。(这将略微增加CPU开销。)

5. 最好的功夫总是以最大的灵活性、自由和对每一个动作的无限想象为特征。

PostgreSQL实现多索引BitmapAnd或BitmapOr扫描,显著提高了多种条件(索引)下的数据命中率。

此外,PostgreSQL具有出色的CBO估计机制,它允许PostgreSQL不总是使用位图合并扫描的所有索引。这也是为什么在“测试原始SQL查询的性能——PostgreSQL多索引BitmapAnd位图或跳过扫描”一节中描述的性能更好。

6. 如何实现极端优化

采用方法五或六,并使用可修复的条件作为分区键来分区数据或索引。

对于其他条件,可以使用PostgreSQL中的多索引BitmapAnd或BitmapOr扫描来提高多条件(索引)的数据命中率。

我们可以看到,按照时间、空间和对象属性从5,000万数据块中进行多维检索所需的时间减少到了0.592毫秒。

7. 对于空间数据,除了使用GiST索引,我们还可以使用BRIN索引,这降低了成本。有条理地组织数据后,会使滤波性能良好。

编译组:李美尼、余书敏

相关链接:

https://dzone.com/articles/efficient-search-on-massive-data-with-multidimensi

如需转载,请后台留言,遵守转载规范

标签: c10cf传感器

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台