1、编程实现:工具:显示:黑名单用户ID、广告ID、点击数
### --- 编程实现:工具类1:SourceKafka package myutils import java.util.Properties import org.apache.flink.api.common.serialization.SimpleStringSchema import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer class SourceKafka { def getKafkaSource(topicName: String) : FlinkKafkaConsumer[String] = { val props = new Properties() props.setProperty("bootstrap.servers","hadoop01:9092,hadoop02:9092,hadoop03:9092");//3,4 props.setProperty("group.id","consumer-group") props.setProperty("key.deserializer","org.apache.kafka.common.serialization.StringDeserializer") props.setProperty("value.deserializer","org.apache.kafka.common.serialization.StringDeserializer") props.setProperty("auto.offset.reset","la") new FlinkKafkaConsumer[String](topicName, new SimpleStringSchema(),props); } }
编程实现:样例类:
### --- 样例类1:BlackUser package modes case class BlackUser(userId: String, aid:String,count:Long)
### --- 编程实现:AdClick package modes case class AdClick(area: String, uid:String ,productId: String,timestamp:Long)
三、编程实现:BlackUserStatistics:显示:黑名单用户ID、广告ID、点击数
package dw.dws import java.util.concurrent.TimeUnit import com.alibaba.fastjson.{JSON, JSONArray, JSONObject} import modes.{AdClick, BlackUser} import myutils.SourceKafka import org.apache.flink.api.common.functions.AggregateFunction import org.apache.flink.api.scala._ import org.apache.flink.streaming.api.scala.function.WindowFunction import org.apache.flink.streaming.api.scala.{DataStream, StreamExecutionEnvironment} import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer //import org.apache.flink.streaming.api.functions.windowing.WindowFunction import org.apache.flink.streaming.api.windowing.time.Time import org.apache.flink.streaming.api.windowing.windows.TimeWindow import org.apache.flink.util.Collector object BlackUserStatistics { def main(args: Array[String]): Unit = { val env: StreamExecutionEnvironment = StreamExecutionEnvironment.getExecutionEnvironment val kafkaConsumer: FlinkKafkaConsumer[String] = new SourceKafka().getKafkaSource("eventlog") val data: DataStream[String] = env.addSource(kafkaConsumer) /* area/uid/productId/timestamp */ val adClickStream: DataStream[AdClick] = data.map(x => { val adJsonObject: JSONObject = JSON.parseObject(x) val attrObject: JSONObject = adJsonObject.getJSONObject("attr") val area: String = attrObject.get("area").toString val uid: String = attrObject.get("uid").toString var productId: String = null var timestamp: Long = 0L val array: JSONArray = adJsonObject.getJSONArray("yanqi_event") array.forEach(x => { val nObject: JSONObject = JSON.parseObject(x.toString) if (nObject.get("name").equals("ad")) { val adObject: JSONObject = nObject.getJSONObject("json") productId = adObject.get("product_id").toString timestamp = TimeUnit.MICROSECONDS.toSeconds(nObject.get("time").toString.toLong) } }) AdClick(area, uid, productId, timestamp) }) val value: DataStream[BlackUser] = adClickStream.keyBy(x => (x.uid, x.productId)) .timeWindow(Time.seconds(10)) .aggregate(new BlackAggFunc, new BlackWindowFunc) val result: DataStream[BlackUser] = value.filter(_.count > 10) result.print() env.execute() } class BlackAggFunc extends AggregateFunction[AdClick,Long,Long] { override def createAccumulator(): Long = 0L override def add(value: AdClick, accumulator: Long): Long = accumulator 1 override def getResult(accumulator: Long): Long = accumulator override def merge(a: Long, b: Long): Long = a b } class BlackWindowFunc extends WindowFunction[Long,BlackUser,(String,String),TimeWindow] { override def apply(key: (String, String), window: TimeWindow, input: Iterable[Long], out: Collector[BlackUser]): Unit = { out.collect(BlackUser(key._1,key._2,input.iterator.next())) } } }