如下所示,输入图像为
输出:
综上所述,我们的任务是获取输入图像,即前轨道的前摄像头视图,并构建鸟瞰轨道视图,它将分割不同的颜色来表示轨道和边界。
仅仅从输入图像中提取方向信息是相当困难的,因为未来的许多轨道信息将被压缩到图像的前20个像素线中。鸟瞰图摄像头可以以更清晰的格式表达前方轨道的信息,我们可以更容易地使用它来规划汽车的行为。
在正常驾驶过程中很难拍摄鸟瞰图,所以如果我们可以使用前置摄像头的图像来重建这些鸟眼图像,我们可以使用更清晰的信息来规划路径。另一个优点是,它可以降低维度,有效地将整个图像表示为一组32个数字,比整个图像占用的空间要少得多。如果你也可以使用这个低维数据作为观察空间来加强学习算法。
本文使用了一种称为变分自动编码器(VAEs)的工具来帮助我们完成这项任务。简单地说,我们把图像压缩到32维的潜在空间,然后重建我们分割的鸟瞰图。本文末尾的PyTorch代码显示完整的模型代码。
为了训练这一点,我们从前置摄像头和鸟类摄像头中收集了一系列图像。然后用编码器编码,然后用全连接层将维度降低到目标尺寸,最后用解码器用一系列反卷积层重建图像。
结果如下:
在重建过程中,虽然能看到一些噪音,但能很好地捕捉到整体曲线。代码如下:
import cv2 import tqdm import numpy as np import torch import torch.nn as nn import torch.nn.functional as F class BEVVAE(nn.Module): """Input should be (bsz, C, H, W) where C=3, H=42, W=144""" def __init__(self, im_c=3, im_h=95, im_w=512, z_dim=32): super().__init__() self.im_c = im_c self.im_h = im_h self.im_w = im_w encoder_list = [ nn.Conv2d(im_c, 32, kernel_size=4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(64, 128, kernel_size=4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(128, 256, kernel_size=4, stride=2, padding=1), nn.ReLU(), nn.Conv2d(256, 512, kernel_size=4, stride=2, padding=1), nn.ReLU(), nn.Flatten(), ] self.encoder = nn.Sequential(*encoder_list) self.encoder_list = encoder_list sample_img = torch.zeros([1, im_c, im_h, im_w]) em_shape = nn.Sequential(*encoder_list[:-1])(sample_img).shape[1:] h_dim = np.prod(em_shape) self.fc1 = nn.Linear(h_dim, z_dim) self.fc2 = nn.Linear(h_dim, z_dim) self.fc3 = nn.Linear(z_dim, h_dim) self.decoder = nn.Sequential( nn.Unflatten(1, em_shape), nn.ConvTranspose2d( em_shape[0], 256, kernel_size=4, stride=2, padding=1, output_padding=(1, 0), ), nn.ReLU(), nn.ConvTranspose2d(256, 128, kernel_size=4, stride=2, padding=1, output_padding=(1, 0)), nn.ReLU(), nn.ConvTranspose2d(128, 64, kernel_size=4, stride=2, padding=1, output_padding=(1, 0)), nn.ReLU(), nn.ConvTranspose2d( 64, 32, kernel_size=4, stride=2, padding=1, output_padding=(1, 0) ), nn.ReLU(), nn.ConvTranspose2d(32, im_c, kernel_size=4, stride=2, padding=1, output_padding=(1, 0)), nn.Sigmoid(), ) def reparameterize(self, mu, logvar): std = logvar.mul(0.5).exp_() esp = torch.randn(*mu.size(), device=mu.device) z = mu std * esp return z def bottleneck(self, h): mu, logvar = self.fc1(h), self.fc2(h) z = self.reparameterize(mu, logvar) return z, mu, logvar def representation(self, x): return self.bottleneck(self.encoder(x))[0] def encode_raw(self, x: np.ndarray, device): # assume x is RGB image with shape (bsz, H, W, 3) p = np.zeros([x.shape[0], 95, 512, 3], np.float) for i in range(x.shape[0]): p[i] = x[i][190:285] / 255 x = p.transpose(0, 3, 1, 2) x = torch.as_tensor(x, device=device, dtype=torch.float) v = self.representation(x) return v, v.detach().cpu().numpy() def squish_targets(self, x: np.ndarray) -> np.ndarray: # Take in target images and resize them p = np.zeros([x.shape[0], 95, 512, 3], np.float) for i in range(x.shape[0]): p[i] = cv2.resize(x[i], (512, 95)) / 255 x = p.transpose(0, 3, 1, 2) return x def encode(self, x): h = self.encoder(x) z, mu, logvar = self.bottleneck(h) return z, mu, logvar def decode(self, z): z = self.fc3(z) return self.decoder(z) def forward(self, x): # expects (N, C, H, W) z, mu, logvar = self.encode(x) z = self.decode(z) return z, mu, logvar def loss(self, bev, recon, mu, logvar, kld_weight=1.0): bce = F.binary_cross_entropy(recon, bev, reduction="sum") kld = -0.5 * torch.sum(1 logvar - mu ** 2 - logvar.exp()) return bc + kld * kld_weight
https://avoid.overfit.cn/post/48f129f8e05242128cc55be13433ad0a
作者:Nandan Tumu