1 简介
2 部分代码
function [bestY,bestX,recording]=AFO2(x,y,option,data)
%% Input
% x----positions of initialized populaiton
% y----fitnesses of initialized populaiton
% option-----parameters set of the algorithm
% data------Pre-defined parameters
% This parameter is used for solving complex problems is passing case data
%% outPut
% bestY ----fitness of best individual
% bestX ----position of best individual
% recording ---- somme data was recorded in this variable
%% initialization
pe=option.pe;
L=option.L;
gap0=option.gap0;
gap=gap0;
dim=option.dim;
maxIteration=option.maxIteration;
recording.bestFit=zeros(maxIteration 1,1);
recording.meanFit=zeros(maxIteration 1,1);
numAgent=option.numAgent;
At=randn(numAgent,dim);
w2=option.w2; %weight of Moving strategy III
w4=option.w4;%weight of Moving strategy III
w5=option.w5;%weight of Moving strategy III
pe=option.pe; % rate to judge Premature convergence
gapMin=option.gapMin;
dec=option.dec;
ub=option.ub;
lb=option.lb;
v_lb=option.v_lb;
v_ub=option.v_ub;
fobj=option.fobj;
count=1;
%% center of population
[y_c,position]=min(y);
x_c=x(position(1);
At_c=At(position(1);
%% memory of population
y_m=y;
x_m=x;
%% update recording
recording.bestFit(1)=y_c;
recording.meanFit(1)=mean(y_m);
%% main loop
iter=1;
while iter<=maxIteration
%Dmp(['AFO,iter:',num2str(iter),',minFit:',num2str(y_c)])
%% Moving Strategy I for center of population
if rem(iter, gap)==0 && dim<option.numAgent
c0=exp(-30*(iter-gap0)/maxIteration); % EQ.2-11
Dx=ones(1,dim);
Dx=c0*Dx/norm(Dx)*norm(v_ub-v_lb)/2; %EQ.2-12 % △x
Dx1=-Dx; %-△x
% △x
for j=1:dim
tempX(j,:)=x_c;
tempX(j,j)=x_c(1,j) Dx(j);
if tempX(j,j)>ub(j)
tempX(j,j)=ub(j);
Dx(1,j)=tempX(j,j)-x_c(1,j);
end
if tempX(j,j)<lb(j)
tempX(j,j)=lb(j);
Dx(1,j)=tempX(j,j)-x_c(1,j);
end
tempY(j,:)=fobj(tempX(j,:),option,data);
if tempY(j)*y_c<0
g0(1,j)=(log(tempY(j))-log(y_c))./Dx(j); %EQ.2-18
else
temp=[tempY(j),y_c];
temp=temp min(temp) eps;
g0(1,j)=(log(temp(1))-log(temp(2)))./Dx(j);
end
g0(isnan(g0))=0;
end
G0=-g0(1,:)*norm(v_ub-v_lb)/2/norm(g(1); % part of Eq 2-18
G0(1,G0(1,:)>v_ub)=G0(1,G0(1,:)>v_ub)/max(G0(1,G0(1,:)>v_ub))*max(v_ub(G0(1,:)>v_ub));
G0(1,G0(1,:)<v_lb)=G0(1,G0(1,:)<v_lb)/min(G0(1,G0(1,:)<v_lb))*min(v_lb(G0(1,:)<v_lb));
G01=G0;
% -△x
Dx=Dx1;
for j=1:dim
tempX(j dim,:)=x_c;
tempX(j dim,j)=x_c(1,j) Dx(j);
if tempX(j dim,j)>ub(j)
tempX(j dim,j)=ub(j);
Dx(1,j)=tempX(j,j)-x_c(1,j);
end
if tempX(j dim,j)<lb(j)
tempX(j dim,j)=lb(j);
Dx(1,j)=tempX(j,j)-x_c(1,j);
end
tempY(j dim,:)=fobj(tempX(j,:),option,data);
if tempY(j)*y_c<0
g0(1,j)=(log(tempY(j))-log(y_c))./Dx(j); %EQ.2-18
else
temp=[tempY(j),y_c];
temp=temp min(temp) eps;
g0(1,j)=(log(temp(1))-log(temp(2)))./Dx(j);
end
g0(isnan(g0))=0;
end G0=-g0(1,:)*norm(v_ub-v_lb)/2/norm(g0(1,:)); % part of Eq 2-18
G0(1,G0(1,:)>v_ub)=G0(1,G0(1,:)>v_ub)/max(G0(1,G0(1,:)>v_ub))*max(v_ub(G0(1,:)>v_ub));
G0(1,G0(1,:)<v_lb)=G0(1,G0(1,:)<v_lb)/min(G0(1,G0(1,:)<v_lb))*min(v_lb(G0(1,:)<v_lb));
G02=G0;
G0=G01+G02; % part of Eq 2-18
G0(isnan(G0))=0;
if sum(G0)==0
N=numAgent-2*dim;
Dm=mean(x-repmat(x_c,numAgent,1));
Dm=norm(Dm); %EQ.2-22
if Dm<norm(v_ub-v_lb)/20*iter/maxIteration
Dm=norm(v_ub-v_lb);
end
for j=2*dim+(1:N)
G0=randn(1,dim);
tempX(j,:)=x(i,:)+5*rand*G0./norm(G0)*Dm; %EQ.2-21
tempX(j,tempX(j,:)<lb)=lb(tempX(j,:)<lb);
tempX(j,tempX(j,:)>ub)=ub(tempX(j,:)>ub);
tempY(j,:)=fobj(tempX(j,:),option,data);
end
else
N=numAgent-2*dim;
r1=exp(-10*(0:N-1)/(N-1));
unitG=norm(Dx)/norm(G0); %EQ.2-19
if unitG~=1
r2=1:-(1-unitG)/(N-1):unitG;
a=r1.*r2; %EQ.2-17
else
a=r1;
end
for j=2*dim+(1:N)
tempX(j,:)=x_c+G0*a(j-2*dim); %EQ,2-20
tempX(j,tempX(j,:)<lb)=lb(tempX(j,:)<lb);
tempX(j,tempX(j,:)>ub)=ub(tempX(j,:)>ub);
tempY(j,:)=fobj(tempX(j,:),option,data);
end
end
[minY,no]=min(tempY);
if minY<y_c
y_c=tempY(no);
x_c=tempX(no,:);
end
if rand>(no-dim*2)/(numAgent-dim*2)*(maxIteration-iter)/maxIteration
gap=max(gapMin,gap-dec); %EQ.2-15
end
else
R1=rand(numAgent,dim);
R2=rand(numAgent,dim);
R3=rand(numAgent,dim);
Rn=rand(numAgent,dim);
indexR1=ceil(rand(numAgent,dim)*numAgent);
indexR2=ceil(rand(numAgent,dim)*numAgent);
std0=exp(-20*iter/maxIteration)*(v_ub-v_lb)/2;
std1=std(x_m);
% In order to use matrix operations, all individuals of the population are updated.
% Although more individuals were updated, the running time of the algorithm dropped tremendously.
% This is because MATLAB is extremely good at matrix operations.
% If you want to rewrite this code in another language, we suggest you refer to AFO1.
% AFO2 is optimized for MATLAB and may not be suitable for your language.
for j=1:dim
x_m1(:,j)=x_m(indexR1(:,j),j);
x_m2(:,j)=x_m(indexR2(:,j),j);
y_m1(:,j)=y_m(indexR1(:,j));
y_m2(:,j)=y_m(indexR2(:,j));
AI(:,j)=R1(:,j).*sign(y_m1(:,j)-y_m2(:,j)).*(x_m1(:,j)-x_m2(:,j));
if std1(j)<=std0(j)
position=find(AI(:,j)==0);
AI(position,j)=Rn(position,j)*(v_ub(j)-v_lb(j))/2;
position=find(AI(:,j)~=0);
AI(position,j)=R2(:,j).*sign(y_m1(:,j)-y_m2(:,j)).*sign(x_m1(:,j)-x_m2(:,j))*(v_ub(j)-v_lb(j))/2;
end
end
for i=1:numAgent
p =tanh(abs(y(i)-y_c)); %EQ.2-30
if rand<p*(maxIteration-iter)/maxIteration
% EQ 2-28
At(i,:)=w2*At(i,:)+w4*R1(i,:).*(x_c-x(i,:))+w5*R2(i,:).*(x_m(i,:)-x(i,:));
x(i,:)=x(i,:)+At(i,:); %EQ 2-29
x(i,x(i,:)<lb)=lb(x(i,:)<lb);
x(i,x(i,:)>ub)=ub(x(i,:)>ub);
tempY(i,:)=y(i);
y(i)=fobj(x(i,:),option,data);
if tempY(i,:)<y(i)
for j=1:dim
r1=indexR1(i,j);
r2=indexR2(i,j);
v(i,j)=R3(i,j).*(x_m(r1,j)-x_m(r2,j))*-sign(y_m(r1)-y_m(r2));
if std1(j)<=std0(j)
if v(i,j)==0
v(i,j)=randn*(v_ub(j)-v_lb(j))/2;
else
v(i,j)=rand.*sign(x_m(r1,j)-x_m(r2,j))*-sign(y_m(r1)-y_m(r2))*(v_ub(j)-v_lb(j))/2;
end
end
end
end
else
x(i,:)=x_c+AI(i,:);
At(i,:)=AI(i,:);
x(i,x(i,:)<lb)=lb(x(i,:)<lb);
x(i,x(i,:)>ub)=ub(x(i,:)>ub);
y(i)=fobj(x(i,:),option,data);
end
if y(i)<y_m(i)
y_m(i)=y(i);
x_m(i,:)=x(i,:);
if y_m(i)<y_c
y_c=y_m(i);
x_c=x_m(i,:);
At_c=At(i,:);
end
end
end
end
% EQ.2-31
if abs(y_c-recording.bestFit(iter))/abs(recording.bestFit(iter))<=pe
count=count+1;
else
count=0;
end
%% 更新记录
recording.bestFit(1+iter)=y_c;
recording.meanFit(1+iter)=mean(y_m);
% recording.std(1+iter)=mean(std(x_m));
% recording.DC(1+iter)=norm(x_m-repmat(x_c,numAgent,1));
% recording.x1(1+iter,:)=x(1,:);
iter=iter+1;
%%
if count>L
for i=1:numAgent
x(i,:)=(ub-lb)*rand+lb;
y(i)=fobj(x(i,:),option,data);
if y(i)<y_m(i)
y_m(i)=y(i);
x_m(i,:)=x(i,:);
if y_m(i)<y_c
y_c=y_m(i);
x_c=x_m(i,:);
At_c=At(i,:);
end
end
end
count=0;
recording.bestFit(1+iter)=y_c;
recording.meanFit(1+iter)=mean(y_m);
iter=iter+1;
end
end
bestY=y_c;
bestX=x_c;
end
%%
3 仿真结果
4 参考文献
[1]李娜. 单亲遗传算法的冷链物流车辆路径问题(VRP)优化研究[D]. 燕山大学.
博主简介:擅长智能优化算法、神经网络预测、信号处理、元胞自动机、图像处理、路径规划、无人机等多种领域的Matlab仿真,相关matlab代码问题可私信交流。
部分理论引用网络文献,若有侵权联系博主删除。