?
§01 数学原理
1.1 洛朗级数
设 f ( z ) f\left( z \right) f(z) 在圆环域 R 1 < ∣ z − z 0 ∣ < R 2 R_1 < \left| {z - z_0 } \right| < R_2 R1<∣z−z0∣<R2 内处处解析,那么 f ( z ) = ∑ n = − ∞ + ∞ c n ( z − z 0 ) n f\left( z \right) = \sum\limits_{n = - \infty }^{ + \infty } {c_n \left( {z - z_0 } \right)^n } f(z)=n=−∞∑+∞cn(z−z0)n 其中 c n = 1 2 π i ∮ C f ( ζ ) ( ζ − z 0 ) n + 1 d ζ , ( n = 0 , ± 1 , ± 2 , ⋯ ) c_n = {1 \over {2\pi i}}\oint_C { { {f\left( \zeta \right)} \over {\left( {\zeta - z_0 } \right)^{n + 1} }}d\zeta } ,\,\,\,\left( {n = 0, \pm 1, \pm 2, \cdots } \right) cn=2πi1∮C(ζ−z0)n+1f(ζ)dζ,(n=0,±1,±2,⋯)
▲ 图1.1 洛朗级数展开
这个公式称为函数 f ( z ) f\left( z \right) f(z) 在以 z 0 z_0 z0 为中心的圆环域: R 1 < ∣ z − z 0 ∣ < R 2 R_1 < \left| {z - z_0 } \right| < R_2 R1<∣z−z0∣<R2 内的洛朗(Laurent)展开式,称 f ( z ) f\left( z \right) f(z) 在此圆环内的洛朗级数。
- 解析部分:洛朗级数中的正整次幂级数部分;
- 主要部分:洛朗级数中的负整次幂级数部分;
这种展开形式具有唯一性。
1.1.1 利用洛朗级数求积分
根据洛朗级数系数 c n c_n cn 计算公式,令 n = − 1 n = - 1 n=−1 时,则有 c − 1 = 1 2 π i ∮ C f ( z ) d z c_{ - 1} = {1 \over {2\pi i}}\oint_C {f\left( z \right)dz} c−1=2πi1∮Cf(z)dz 所以 ∮ C f ( z ) d z = 2 π i ⋅ c − 1 \oint_C {f\left( z \right)dz} = 2\pi i \cdot c_{ - 1} ∮Cf(z)dz=2πi⋅c−1
§02 应用举例
2.1 将函数展开成洛朗级数
函数 f ( z ) = 1 ( z − 1 ) ( z − 2 ) f\left( z \right) = {1 \over {\left( {z - 1} \right)\left( {z - 2} \right)}} f(z)=(z−1)(z−2)1 在以下三种圆环域处处解析,试把 f ( z ) f\left( z \right) f(z) 在这些区域内展成洛朗级数。
0 < ∣ z ∣ < 1 ; 0 < \left| z \right| < 1; 0<∣z∣<1; 1 < ∣ z ∣ < 2 1 < \left| z \right| < 2 1<∣z∣<2 ; 2 < ∣ z ∣ < + ∞ 2 < \left| z \right| < + \infty 2<∣z∣<+∞
▲ 图2.1 洛朗级数收敛域
先把 f ( z ) f\left( z \right) f(z) 进行分式分解 f ( z ) = 1 1 − z − 1 2 − z f\left( z \right) = {1 \over {1 - z}} - {1 \over {2 - z}} f(z)=1−z1−2−z1
在 0 < ∣ z ∣ < 1 0 < \left| z \right| < 1 0<∣z∣<1 内,由于 ∣ z ∣ < 1 \left| z \right| < 1 ∣z∣<1 ,从而 ∣ z / 2 ∣ < 1 \left| {z/2} \right| < 1 ∣z/2∣<1 ,所以 1 1 − z = ∑ n = 0 ∞ z n , 1 2 − z = 1 2 ∑ n = 0 ∞ ( z 2 ) n {1 \over {1 - z}} = \sum\limits_{n = 0}^\infty {z^n } ,\,\,{1 \over {2 - z}} = {1 \over 2}\sum\limits_{n = 0}^\infty {\left( { {z \over 2}} \right)^n } 1−z1=n=0∑∞zn,2−z1=21n=0∑∞(2z)n 因此 f ( z ) = ∑ n = 0 ∞ z n − 1 2 ∑ n = 0 ∞ ( z 2 ) n = ∑ n = 0 ∞ ( 1 − 1 2 n + 1 ) z n f\left( z \right) = \sum\limits_{n = 0}^\infty {z^n } - {1 \over 2}\sum\limits_{n = 0}^\infty {\left( { {z \over 2}} \right)^n } = \sum\limits_{n = 0}^\infty {\left( {1 - {1 \over {2^{n + 1} }}} \right)z^n } f(z)=n=0∑∞zn−21n=0∑∞(2z)n=n=0∑∞(1−2n+11)zn
结果中不包含 z z z 负幂级数,因为 f ( z ) f\left( z \right) f(z) 在 z = 0 z = 0 z=0 处解析。
在 1 < ∣ z ∣ < 2 1 < \left| z \right| < 2 1<∣z∣<2 内,由于 ∣ z ∣ > 1 \left| z \right| > 1 ∣z∣>1 所以 ∣ 1 z ∣ < 1 \left| { {1 \over z}} \right| < 1 ∣∣z1∣∣<1 ,所以 1 1 − z = − 1 z ⋅ 1 1 − 1 z = − 1 z ∑ n = 0 ∞ z − n {1 \over {1 - z}} = - {1 \over z} \cdot {1 \over {1 - {1 \over z}}} = - {1 \over z}\sum\limits_{n = 0}^\infty {z^{ - n} } 1−z1=−z1⋅1−z11=−z1n=0∑∞z−n 所以 f ( z ) = − 1 z ∑ n = 0 ∞ z − n − 1 2 ∑ n = 0 ∞ ( z 2 ) n f\left( z \right) = - {1 \over z}\sum\limits_{n = 0}^\infty {z^{ - n} } - {1 \over 2}\sum\limits_{n = 0}^\infty {\left( { {z \over 2}} \right)^n } f(z)=−z1n=0∑∞z−n−21n=0∑∞(2z)n
当 2 < ∣ z ∣ < ∞ 2 < \left| z \right| < \infty 2<∣z∣<∞ 时,对于 1 2 − z {1 \over {2 - z}} 2−z1 也需要进行另外一种形式的展开 1 2 − z = − 1 z ⋅ 1 1 − 2 z = − 1 z ∑ n = 0 ∞ ( z 2 ) − n {1 \over {2 - z}} = - {1 \over z} \cdot {1 \over {1 - {2 \over z}}} = - {1 \over z}\sum\limits_{n = 0}^\infty {\left( { {z \over 2}} \right)^{ - n} } 2−z1=−z1⋅1−z21=−z1n=0∑∞(2z)−n 所以 f ( z ) = 1 z ∑ n = 0 ∞ ( z 2 ) − n − 1 z ∑ n = 0 ∞ z − n = ∑ n = 0 ∞ ( 2 n − 1 ) z − ( n + 2 ) f\left( z \right) = {1 \over z}\sum\limits_{n = 0}^\infty {\left( { {z \over 2}} \right)^{ - n} - {1 \over z}\sum\limits_{n = 0}^\infty {z^{ - n} } = \sum\limits_{n = 0}^\infty {\left( {2^n - 1} \right)z^{ - \left( {n + 2} \right)} } } f(z)=z1n=0∑∞(2z)−n−z1n=0∑∞z−n=n=0∑∞(2n−1)z−(n+2)
2.2 利用洛朗级数求围线积分
求下列个积分值
∮ ∣ z ∣ = 3 1 z ( z + 1 ) ( z + 4 ) d z \oint_{\left| z \right| = 3} { {1 \over {z\left( {z + 1} \right)\left( {z + 4} \right)}}dz} ∮∣z∣=3z(z+1)(z+4)1dz
∮ ∣ z ∣ = 2 z e 1 z 1 − z d z \oint_{\left| z \right| = 2} { { {ze^{ {1 \over z}} } \over {1 - z}}dz} ∮∣z∣=21−zzez1dz
将上面积分内的函数进行洛朗级数展开,获得对应 c − 1 c_{ - 1} c−1 系数,那么积分值就等于 2 π i ⋅ c − 1 2\pi i \cdot c_{ - 1} 2πi⋅c−1 。
函数 f ( z ) = 1 z ( z + 1 ) ( z + 4 ) f\left( z \right) = {1 \over {z\left( {z + 1} \right)\left( {z + 4} \right)}} f(z)=z(z+1)(z+4)1 在 1 < ∣ z ∣ < 4 1 < \left| z \right| < 4 1<∣z∣<4 内处处解析, ∣ z ∣ = 3 \left| z \right| = 3 ∣z∣=3 圆环域内,所以可以将其展开洛朗级数 f ( z ) = 1 4 z − 1 3 ( z + 1 ) + 1 12 ( z + 4 ) = 1 4 z − 1 3 z ( 1 + 1 z ) + 1 48 ( 1 + z 4 ) f\left( z \right) = {1 \over {4z}} - {1 \over {3\left( {z + 1} \right)}} + {1 \over {12\left( {z + 4} \right)}} = {1 \over {4z}} - {1 \over {3z\left( {1 + {1 \over z}} \right)}} + {1 \over {48\left( {1 + {z \over 4}} \right)}} f(z)=4z1−3(z+1)1+12(z+4)1=4z1−3z(1+z1)1+48(1+4z)1 = 1 4 z − 1 3 z + 1 3 z 3 − ⋯ + 1 48 ( 1 − z 4 + z 2 16 − ⋯ ) = {1 \over {4z}} - {1 \over {3z}} + {1 \over {3z^3 }} - \cdots + {1 \over {48}}\left( {1 - {z \over 4} + { {z^2 } \over {16}} - \cdots } \right) =4z1−3z1+3z31−⋯+481(1−4z+16z2−⋯)由此可见 c − 1 = 1 4 − 1 3 = − 1 12 c_{ - 1} = {1 \over 4} - {1 \over 3} = - {1 \over {12}} c−1=41−31=−121 ,从而 ∮ C d z z ( z + 1 ) ( z + 4 ) = 2 π i ( − 1 12 ) = − π i 6 \oint_C { { {dz} \over {z\left( {z + 1} \right)\left( {z + 4} \right)}}} = 2\pi i\left( { - {1 \over {12}}} \right) = - { {\pi i} \over 6} ∮Cz(z+1)(z+4)dz=2πi(−121)=−6πi
把 f ( z ) = z e 1 z 1 − z f\left( z \right) = { {ze^{ {1 \over z}} } \over {1 - z}} f(z)=1−zzez1 zl 1 < ∣ z ∣ < + ∞ 1 < \left| z \right| < + \infty 1<∣z∣<+∞ 圆环内洛朗级数展开 f ( z ) = e 1 z − ( 1 − 1 z ) = − ( 1 + 1 z + 1 z 2 + ⋯ ) ( 1 + 1 z + 1 2 ! z 2 + ⋯ ) f\left( z \right) = { {e^{ {1 \over z}} } \over { - \left( {1 - {1 \over z}} \right)}} = - \left( {1 + {1 \over z} + {1 \over {z^2 }} + \cdots } \right)\left( {1 + {1 \over z} + {1 \over {2!z^2 }} + \cdots } \right) f(z)=−(1−z1)ez1=−(1+z1+z21+⋯)(1+z1+2!z21+⋯) = − ( 1 + 2 z + 5 2 z 2 + ⋯ ) = - \left( {1 + {2 \over z} + {5 \over {2z^2 }} + \cdots } \right) =−(1+z2+2z25+⋯)
所以 c − 1 = − 2 c_{ - 1} = - 2 c−1=−2 ,从而 ∮ C z e 1 z 1 − z d z = 2 π i ⋅ c − 1 = − 4 π i \oint_C { { {ze^{ {1 \over z}} } \over {1 - z}}dz} = 2\pi i \cdot c_{ - 1} = - 4\pi i ∮C1−zzez1dz=2πi⋅c−1=−4πi
§03 信号与系统
对于离散序列 x [ n ] x\left[ n \right] x[n] 进行z变换,所得到的结果 X ( z ) X\left( z \right) X(z) 实际上就是在其收敛域内的洛朗级数展开。 X ( z ) = ∑ n = − ∞ + ∞ x [ n ] z − n X\left( z \right) = \sum\limits_{n = - \infty }^{ + \infty } {x\left[ n \right]z^{ - n} } X(z)=n=−∞∑+∞x[n]z−n
通过前面洛朗级数展开公式可以获得 z z z 反变换公式。
§04 作业练习
4.1 展开成洛朗级数
4.1.1 在圆环域内展开洛朗级数
将下列函数在指定的圆环域内展开成洛朗级数。
( 1 ) 1 ( z 2 + 1 ) ( z − 2 ) , 1 < ∣ z ∣ < 2 \left( 1 \right)\,\,\,\,\,\,{1 \over {\left( {z^2 + 1} \right)\left( {z - 2} \right)}},\,\,\,1 < \left| z \right| < 2 (1)(z2+1)(z−2)1,1<∣z∣<2 ( 2 ) 1 z ( 1 − z ) 2 , 0 < ∣ z ∣ < 2 ; 0 < ∣ z − 1 ∣ < 1 ; \left( 2 \right)\,\,\,\,{1 \over {z\left( {1 - z} \right)^2 }},\,\,\,0 < \left| z \right| < 2;\,\,\,0 < \left| {z - 1} \right| < 1; (2)z(1−z)21,0<∣z∣<2;0<∣z−1∣<1; ( 3 ) 1 ( z − 1 ) ( z − 2 ) , 0 < ∣ z − 1 ∣ < 1 ; 1 < ∣ z − 2 ∣ < + ∞ \left( 3 \right)\,\,\,\,{1 \over {\left( {z - 1} \right)\left( {z - 2} \right)}},\,\,0 < \left| {z - 1} \right| < 1;\,\,\,1 < \left| {z - 2} \right| < + \infty (3)(z−1)(z−2)1,0<∣z−1∣<1;1<∣z−2∣<+∞ ( 4 ) e 1 1 − z , 1 < ∣ z ∣ < + ∞ \left( 4 \right)\,\,\,\,e^{ {1 \over {1 - z}}} ,\,\,\,1 < \left| z \right| < + \infty (4)e1−z1,1<∣z∣<+∞ ( 5 ) 1 z 2 ( z − i ) , ∣ z − i ∣ < R \left( 5 \right)\,\,\,{1 \over {z^2 \left( {z - i} \right)}},\,\,\,\left| {z - i} \right| < R (5)z2(z−i)1,∣z−i∣<R ( 6 ) sin 1 1 − z , ∣ z − 1 ∣ > 0 \left( 6 \right)\,\,\,\,\sin {1 \over {1 - z}},\,\,\,\,\left| {z - 1} \right| > 0 (6)sin1−z1,∣z−1∣>0 ( 7 ) ( z − 1 ) ( z − 2 ) ( z − 3 ) ( z − 4 ) , 3 < ∣ z ∣ < 4 ; 4 < ∣ z ∣ < + ∞ \left( 7 \right)\,\,\,\,{ {\left( {z - 1} \right)\left( {z - 2} \right)} \over {\left( {z - 3} \right)\left( {z - 4} \right)}},\,\,\,3 < \left| z \right| < 4;\,\,4 < \left| z \right| < + \infty (7)(z−3)(z−4)(z−1)(z−2),3<∣z∣<4;4<∣z∣<+∞
4.1.2 问答题
函数 f ( z ) = tan ( 1 z ) f\left( z \right) = \tan \left( { {1 \over z}} \right) f(z)=tan(z1) 能否在 0 < ∣ z ∣ < R , ( 0 < R < + ∞ ) 0 < \left| z \right| < R\,,\left( {0 < R < + \infty } \right) 0<∣z∣<R,(0<R<+∞) 内展开成洛朗级数?为什么?
4.1.3 正弦波洛朗级数
如果 k k k 满足 k 2 < 1 k^2 < 1 k2<1 的实数,证明 ∑ n = 0 ∞ k n sin [ ( n + 1 ) θ ] = sin θ 1 − 2 k cos θ + k 2 \sum\limits_{n = 0}^\infty {k^n \sin \left[ {\left( {n + 1} \right)\theta } \right]} = { {\sin \theta } \over {1 - 2k\cos \theta + k^2 }} n=0∑∞knsin[(n+1)θ]=1−2kcosθ+k2sinθ ∑ n = 0 ∞ k n cos [ ( n + 1 ) θ ] = cos θ − k 1 − 2 k cos θ + k 2 \sum\limits_{n = 0}^\infty {k^n \cos \left[ {\left( {n + 1} \right)\theta } \right]} = { {\cos \theta - k} \over {1 - 2k\cos \theta + k^2 }} n=0∑∞kncos[(n+1)θ]=1−2kcosθ+k2cosθ−k
4.2 利用洛朗级数求围线积分
如果 C C C 为正向圆周, ∣ z ∣ = 3 \left| z \right| = 3 ∣z∣=3 。求积分 ∮ C f ( z ) d z \oint_C {f\left( z \right)dz} ∮Cf(z)dz 的值。设 f ( z ) f\left( z \right) f(z) 分别为 ( 1 ) 1 z ( z + 2 ) ; ( 2 ) z + 2 ( z + 1 ) z ; \left( 1 \right)\,\,\,\,{1 \over {z\left( {z + 2} \right)}};\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 2 \right)\,\,\,{ {z + 2} \over {\left( {z + 1} \right)z}}; (1)z(z+2)1;(2)(z+1)zz+2; ( 3 ) 1 z ( z + 1 ) 2 ; ( 4 ) z ( z + 1 ) ( z + 2 ) ; \left( 3 \right)\,\,\,\,{1 \over {z\left( {z + 1} \right)^2 }};\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( 4 \right)\,\,\,\,{z \over {\left( {z + 1} \right)\left( {z + 2} \right)}}; (3)z(z+1)21;(4)(z+1)(z+2)z;
- 图1.1 洛朗级数展开
- 图2.1 洛朗级数收敛域