#coding=utf-8 #参考深度之眼:Dodo老师的代码 ''' 数据集:Mnist 训练集数量:6万 测试集数量:10000(这里用:200) ------------------------------ 运行结果:(相邻k数:25) 算法-欧式距离 正确率:97% 运行时长:308s 使用方法-曼哈顿距离 正确率:14% 运行时长:246s ''' import numpy as np import time from tqdm import tqdm def loadData(fileName): ''' 加载文件 :param fileName:要加载的文件路径 :return: 数据集和标签集 ''' print('start read file') #存储数据和标记 dataArr = []; labelArr = [] #读取文件 fr = open(fileName) #遍历文件中的每一行 for line in tqdm(fr.readlines()): #获取当前行,按,切割成字段,放入列表 #strip:删除每行字符串首尾指定的字符(默认空格或换行符) #split:将字符串按指定字符切割成每个字段,返回列表形式 curLine = line.strip().split(',') #将每行除标记外的数据放入数据集中(curLine[0]标记信息) #将原始字符串形式的数据转换为整形 dataArr.append([int(num) for num in curLine[1:]]) #将标记信息集中在标记中 #同时将标记转换为整形 labelArr.append(int(curLine[0])) #返回数据集和标记 return dataArr, labelArr def calcDist(x1, x2): ''' 计算两个样本点向量之间的距离 使用欧氏距离,即 样本点各元素相减的平方 再求和 再开方 这里写欧式例子公式不方便,百度或谷歌欧式距离(也称欧几里距离) :param x1:向量1 :param x2:向量2 :return:欧量之间的欧式距离 ''' return np.sqrt(np.sum(np.square(x1 - x2)))
#马哈顿距离计算公式
# return np.sum(x1 - x2)
def getClosest(trainDataMat, trainLabelMat, x, topK):
''' 预测样本x的标记。 获取方式通过找到与样本x最近的topK个点,并查看它们的标签。 查找里面占某类标签最多的那类标签 (书中3.1 3.2节) :param trainDataMat:训练集数据集 :param trainLabelMat:训练集标签集 :param x:要预测的样本x :param topK:选择参考最邻近样本的数目(样本数目的选择关系到正确率,详看3.2.3 K值的选择) :return:预测的标记 '''
#建立一个存放向量x与每个训练集中样本距离的列表
#列表的长度为训练集的长度,distList[i]表示x与训练集中第
## i个样本的距离
distList = [0] * len(trainLabelMat)
#遍历训练集中所有的样本点,计算与x的距离
for i in range(len(trainDataMat)):
#获取训练集中当前样本的向量
x1 = trainDataMat[i]
#计算向量x与训练集样本x的距离
curDist = calcDist(x1, x)
#将距离放入对应的列表位置中
distList[i] = curDist
#对距离列表进行排序
#argsort:函数将数组的值从小到大排序后,并按照其相对应的索引值输出
#例如:
# >>> x = np.array([3, 1, 2])
# >>> np.argsort(x)
# array([1, 2, 0])
#返回的是列表中从小到大的元素索引值,对于我们这种需要查找最小距离的情况来说很合适
#array返回的是整个索引值列表,我们通过[:topK]取列表中前topL个放入list中。
#----------------优化点-------------------
#由于我们只取topK小的元素索引值,所以其实不需要对整个列表进行排序,而argsort是对整个
#列表进行排序的,存在时间上的浪费。字典有现成的方法可以只排序top大或top小,可以自行查阅
#对代码进行稍稍修改即可
#这里没有对其进行优化主要原因是KNN的时间耗费大头在计算向量与向量之间的距离上,由于向量高维
#所以计算时间需要很长,所以如果要提升时间,在这里优化的意义不大。(当然不是说就可以不优化了,
#主要是我太懒了)
topKList = np.argsort(np.array(distList))[:topK] #升序排序
#建立一个长度时的列表,用于选择数量最多的标记
#3.2.4提到了分类决策使用的是投票表决,topK个标记每人有一票,在数组中每个标记代表的位置中投入
#自己对应的地方,随后进行唱票选择最高票的标记
labelList = [0] * 10
#对topK个索引进行遍历
for index in topKList:
#trainLabelMat[index]:在训练集标签中寻找topK元素索引对应的标记
#int(trainLabelMat[index]):将标记转换为int(实际上已经是int了,但是不int的话,报错)
#labelList[int(trainLabelMat[index])]:找到标记在labelList中对应的位置
#最后加1,表示投了一票
labelList[int(trainLabelMat[index])] += 1
#max(labelList):找到选票箱中票数最多的票数值
#labelList.index(max(labelList)):再根据最大值在列表中找到该值对应的索引,等同于预测的标记
return labelList.index(max(labelList))
def model_test(trainDataArr, trainLabelArr, testDataArr, testLabelArr, topK):
''' 测试正确率 :param trainDataArr:训练集数据集 :param trainLabelArr: 训练集标记 :param testDataArr: 测试集数据集 :param testLabelArr: 测试集标记 :param topK: 选择多少个邻近点参考 :return: 正确率 '''
print('start test')
#将所有列表转换为矩阵形式,方便运算
trainDataMat = np.mat(trainDataArr); trainLabelMat = np.mat(trainLabelArr).T
testDataMat = np.mat(testDataArr); testLabelMat = np.mat(testLabelArr).T
#错误值计数
errorCnt = 0
#遍历测试集,对每个测试集样本进行测试
#由于计算向量与向量之间的时间耗费太大,测试集有6000个样本,所以这里人为改成了
#测试200个样本点,如果要全跑,将行注释取消,再下一行for注释即可,同时下面的print
#和return也要相应的更换注释行
# for i in range(len(testDataMat)):
for i in range(200):
# print('test %d:%d'%(i, len(trainDataArr)))
print('test %d:%d' % (i, 200))
#读取测试集当前测试样本的向量
x = testDataMat[i]
#获取预测的标记
y = getClosest(trainDataMat, trainLabelMat, x, topK)
#如果预测标记与实际标记不符,错误值计数加1
if y != testLabelMat[i]: errorCnt += 1
#返回正确率
# return 1 - (errorCnt / len(testDataMat))
return 1 - (errorCnt / 200)
if __name__ == "__main__":
start = time.time()
#获取训练集
trainDataArr, trainLabelArr = loadData('../Mnist/mnist_train.csv')
#获取测试集
testDataArr, testLabelArr = loadData('../Mnist/mnist_test.csv')
#计算测试集正确率
accur = model_test(trainDataArr, trainLabelArr, testDataArr, testLabelArr, 25)
#打印正确率
print('accur is:%d'%(accur * 100), '%')
end = time.time()
#显示花费时间
print('time span:', end - start)
Mnist数据集(csv格式) 链接:https://pan.baidu.com/s/1i3K61t-NqWuAchedGTAUPA 提取码:0i1e 复制这段内容后打开百度网盘手机App,操作更方便哦
新手一枚,如果有错,评论区帮忙指正谢谢大佬们,thanks~