资讯详情

GSE82158_macrophage_ontogeny_norm_counts im am bleomycin

 #step1 #获取rds文件 if(1==1){ 
          rm(list = ls())    options(stringsAsFactors = F)      getwd()   path='G:\\silicosis\\geo\\GSE82158_Bulk-seq_bleomycin_IM_AM_macrophage_ontogeny\\GSE82158_macrophage_ontogeny_norm_counts'   setwd(path)   getwd()            getwd()   rt=read.table("G:/silicosis/geo/GSE82158_Bulk-seq_bleomycin_IM_AM_macrophage_ontogeny/GSE82158_macrophage_ontogeny_norm_counts.txt.gz",                 sep = '\t',header = T,comment.char = '!')      head(rt)[1:3,1:4]   rownames(rt)=rt$Symbol   dat=rt[,-1]   head(dat)[1:3,1:4]      dat[1:4,span class="token number">1:4] #查看dat这个矩阵的1至4行和1至4列,逗号前为行,逗号后为列
  boxplot(dat[,1:10],las=2)
  
  mydat=dat[,grep(colnames(dat),pattern = '^C8flx')]
  coldata=DataFrame(row.names = colnames(mydat),
                    treatment=c(rep("IM_D14",4),
                                rep("IM_D19",5),
                                rep('TRAM_D0',3),
                                rep('TRAM_D14',4),
                                rep('TRAM_D19',5),
                                rep('Mo-AM_D14',4),
                                rep('Mo-AM_D19',5),
                                rep('mono_D14',4),
                                rep('mono_D19',5) ))
  
  mydata=SummarizedExperiment::SummarizedExperiment(assays = mydat,
                                                    colData = coldata)
  
  
  
  
  
  colData(mydata)
  
  getwd()
  
  #save(mydata,file ="G:/silicosis/geo/GSE82158_Bulk-seq_bleomycin_IM_AM_macrophage_ontogeny/GSE82158_macrophage_ontogeny_norm_counts/proper.rds" )
  load("G:/silicosis/geo/GSE82158_Bulk-seq_bleomycin_IM_AM_macrophage_ontogeny/GSE82158_macrophage_ontogeny_norm_counts/proper.rds")
  
  library(SummarizedExperiment)
  library(stringr)
  pd=pData(mydata)
  str_split(colnames(mydata),"_",simplify = T)[,2:3]
  paste0(str_split(colnames(mydata),"_",simplify = T)[,2],'_',str_split(colnames(mydata),"_",simplify = T)[,3])
  g=paste0(str_split(colnames(mydata),"_",simplify = T)[,2],'_',str_split(colnames(mydata),"_",simplify = T)[,3])
  table(g)
  g
  
  dat=mydata[,g %in% c('Sfhi_D19','Sflow_D19')]
  
  group_list=g[g %in% c('Sfhi_D19','Sflow_D19')]
  group_list
  table(group_list)
  dat[1:4,1:4] 
  #dat=assay(dat)
  dat[1:4,1:4]
  ncol(dat)
  
  
  getwd()
  source('G:/r/r language introduction_2020_12_05/R in action/2020_1205_geo/GEO-master/airway_RNAseq/run_DEG_RNA-seq.R')
  # 这个 run_DEG_RNAseq 函数,是我自定义的
  # 主要是包装了3个RNA-seq数据分析的R包
  # 以及部分可视化函数
  #exprSet=exprSet[,colnames(exprSet) %in% c("TRAM_D0","Mo-AM_D14")]
  #group_list=group_list[colnames(exprSet) %in% c("TRAM_D0","Mo-AM_D14")]
  dat=as.integer(dat)
  dat=as.matrix(dat)
  
  table(is.na(dat))
  dat[1:3,1:3]
  colnames(dat)
  run_DEG_RNAseq(dat,group_list,
                 g1="Sfhi_D19",g2="Sflow_D19"  #,pro = "silica"
  )
  
  
  
  
  
  
  ## 挑选一些感兴趣的临床表型。
  library(stringr)
  
  if(1==1){ 
       
    str_split(colnames(dat),'_',simplify = T)[,2:4]
    for(eachelement in str_split(colnames(dat),'_',simplify = T)[,2:4]){ 
       
      print(paste(eachelement,collapse = "_"))
    }
    paste(str_split(colnames(dat),'_',simplify = T)[,2:4],collapse = '_')
    paste(c("Sflow","D14","2"),collapse="_")
    g=str_split(colnames(dat),'_',simplify = T)[,2:4]
  }
  
  colnames(dat)
  mydat=dat[,grep(colnames(dat),pattern = '^C8flx')]
  mydat[1:4,1:4]
  colnames(mydat)
  
  #改名字列名
  grep(colnames(mydat),pattern = 'IM_D14')
  colnames(mydat)[grep(colnames(mydat),pattern = 'IM_D14')]='IM_D14'
  colnames(mydat)[grep(colnames(mydat),pattern = 'IM_D19')]='IM_D19'
  colnames(mydat)[grep(colnames(mydat),pattern = 'mono_D14')]='mono_D14'
  colnames(mydat)[grep(colnames(mydat),pattern = 'mono_D19')]='mono_D19'
  colnames(mydat)[grep(colnames(mydat),pattern = 'Sfhi_D0')]='TRAM_D0'
  colnames(mydat)[grep(colnames(mydat),pattern = 'Sfhi_D14')]='TRAM_D14'
  colnames(mydat)[grep(colnames(mydat),pattern = 'Sfhi_D19')]='TRAM_D19'
  colnames(mydat)[grep(colnames(mydat),pattern = 'Sflow_D14')]='Mo-AM_D14'
  colnames(mydat)[grep(colnames(mydat),pattern = 'Sflow_D19')]='Mo-AM_D19'
  
  mydat[1:3,1:4]
  table(colnames(mydat))
  library(SummarizedExperiment)
  myexpreset=SummarizedExperiment(assays =list(counts=mydat),
                                  colData = DataFrame(row.names = colnames(mydat),
                                                      treatment=c(rep("IM_D14",4),
                                                                  rep("IM_D19",5),
                                                                  rep('TRAM_D0',3),
                                                                  rep('TRAM_D14',4),
                                                                  rep('TRAM_D19',5),
                                                                  rep('Mo-AM_D14',4),
                                                                  rep('Mo-AM_D19',5),
                                                                  rep('mono_D14',4),
                                                                  rep('mono_D19',5)
                                                                  
                                                      )
                                  )
  )
  
  getwd()
  group_list=colData(myexpreset)
  pData(myexpreset)
  
  
  
  exprSet=assay(myexpreset)
  table(group_list)
  colnames(myexpreset)
  
  
}

```handlebars
在这里插入代码片


#step2
load("G:/silicosis/geo/GSE82158_Bulk-seq_bleomycin_IM_AM_macrophage_ontogeny/GSE82158_macrophage_ontogeny_norm_counts/myexprset_raw.rds")
library(SummarizedExperiment)
exprSet=assay(myexpreset)


colnames(exprSet)

exprSet[1:4,1:4]
as.data.frame(exprSet[1:4,1:4])
t(as.data.frame(exprSet[1:4,1:4]))
myexpr=t(as.data.frame(exprSet))
head(myexpr)[1:4,2:3]
rownames(myexpr)
myexpr=as.data.frame(myexpr)
myexpr$'type'=ifelse(grepl(rownames(myexpr),pattern = 'IM_D14'),'IM_D14',
                     ifelse(grepl(rownames(myexpr),pattern = 'IM_D19'),'IM_D19',
                            ifelse(grepl(rownames(myexpr),pattern = 'Mo.AM_D19'),'Mo.AM_D19',
                                   ifelse(grepl(rownames(myexpr),pattern = 'Mo.AM_D14'),'Mo.AM_D14',
                                          ifelse(grepl(rownames(myexpr),pattern = 'mono_D19'),'mono_D19',
                                                 ifelse(grepl(rownames(myexpr),pattern = 'mono_D14'),'mono_D14',
                                                        ifelse(grepl(rownames(myexpr),pattern = 'TRAM_D19'),'TRAM_D19',
                                                               ifelse(grepl(rownames(myexpr),pattern = 'TRAM_D14'),'TRAM_D14',
                                                                      'TRAM_D0')))
                                          )))))

library(ggplot2)
ggplot2::ggplot(myexpr,aes(type,ENSMUSG00000002603,fill=type))+geom_boxplot()
ggplot2::ggplot(myexpr,aes(type,ENSMUSG00000014599,fill=type))+geom_boxplot()

ggplot2::ggplot(myexpr,aes(type,ENSMUSG00000025856,fill=type))+geom_boxplot()


exprSet['ENSMUSG00000002603',]

getwd()

openxlsx::write.xlsx(exprSet,'exprset.xlsx',row.names=TRUE)


t(exprSet['ENSMUSG00000002603',])
boxplot(t(exprSet['ENSMUSG00000002603',]))
boxplot(colnames(mydat),exprSet['ENSMUSG00000002603',])


data_for_ggplot=transform.data.frame(exprSet)

ggplot2::ggplot(data=exprSet['ENSMUSG00000002603',],
                mapping = aes(x=colnames(mydat)))+boxplot(x=colnames(mydat))























###########333

path="G:\\silicosis\\geo\\GSE82158_Bulk-seq_bleomycin_IM_AM_macrophage_ontogeny\\GSE82158_macrophage_ontogeny_norm_counts"
setwd(path)
getwd()

dat=exprSet


colData(myexpreset)
group_list=colData(myexpreset)$treatment
# 每次都要检测数据
 

标签: 对射型光电传感器gse6

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台