资讯详情

aws 认证_AWS ML专业认证备忘单

aws 认证

the highly important and carefully crafted piece, * this will only be useful after completing the entire course on Udemy

精心制作的作品非常重要,*只完成相关工作Udemy整门课后才有用

适用于AWS ML专业的Udemy课程 (Udemy Course for AWS ML Specialty)

备忘单 (Cheat Sheet)

降低SageMaker上自动超参数调整的成本 (Reduce the cost of Automatic Hyperparameter tuning on SageMaker)

  • use log scales on parameter ranges

    在参数范围内使用对数刻度
  • less concurrent while tuning, cause it learns in different runs

    调整时并发性较小,导致在不同的操作中学习
  • have the smallest range of hyperparameters

    具有最小范围的超参数

is an important metric in situations where classifications are highly imbalanced, and the positive case is rare. Accuracy tends to be misleading in these cases.

在分类高度不平衡的情况下, 这是一个重要的指标,而积极的案例很少见。 在这些情况下,准确性往往被误导。

  • Ex: Fraud Detection

    例如:欺诈检测

混淆矩阵备忘单— (Cheat Sheet for Confusion Matrix —)

更多的时代和过度拟合? (More epochs and overfitted?)

  • use drop out regularization

    使用辍学正则化
  • early stopping of epochs is good advice

    早停是个好建议

SageMaker支持笔记本实例Internet,在VPC潜在的安全漏洞。 (SageMaker notebook instances are Internet-enabled, creating a potential security hole in your VPC.)

  • VPC Interface Endpoint(PrivateLink)

    VPC接口端点(PrivateLink)
  • Modify instance’s security group to allow outbound connections for training and hosting.

    修改实例安全组,允许出站连接进行培训和托管。

边缘 (Edge)

  • SageMaker Neo IoT GreenGrass

    SageMaker Neo 物联网GreenGrass
  • sample edge device — Nvidia Jetson

    样品边缘设备— Nvidia Jetson

设计并推向边缘 (To design and push something to edge)

  • design something to do the job, say TF model

    设计能胜任的工作,比如TF模型
  • compile it for the edge device using SageMaker Neo, say Nvidia Jetson

    Nvidia Jetson说,使用SageMaker Neo将其编译成边缘设备
  • run it on the edge using IoT GreenGrass

    使用IoT GreenGrass在边缘运行

亚马逊上的NLP —理解 (NLP on Amazon — Comprehend)

  • Another solution would be to use natural language processing through a service such as Amazon Comprehend.

    另一个解决方案是通过,例如Amazon Comprehend自然语言处理等服务。

您正在SageMaker训练有数百万行训练数据XGBoost并希望使用模型Apache Spark这些数据大规模预处理。 实现这一目标最简单的架构是什么? (You are training an XGBoost model on SageMaker with millions of rows of training data, and you wish to use Apache Spark to pre-process this data at scale. What is the simplest architecture that achieves this?)

翻译自: https://medium.com/swlh/cheat-sheet-for-aws-ml-specialty-certification-e8f9c88566ba

aws 认证

标签: kum2孔连接器

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

 锐单商城 - 一站式电子元器件采购平台  

 深圳锐单电子有限公司