我们的地球是一个有生命的身体。它不仅有大气、陆地和海洋之间的物理化学过程,而且对环境产生重大影响,形成与环境相互作用的整体。自进入人类世界以来,人类已成为地球系统演变的主导力量,排放温室气体和开采资源,破坏地球系统的稳定性,进而挑战人类自身的可持续发展。地球系统与人类福祉密切相关,理解复杂的物理、化学、生物和人类过程对我们具有重要意义。2020年1月发表于 nature reviews earth & environment 的文章“The emergence and evolution of Earth System Science回顾地球系统的科学发展历程,强调将孤立研究地球系统各部分的传统学科联系起来,建立地球系统科学真正统一的愿景。集智俱乐部为读者组织翻译全文。
过去,概念化地球是现代地球系统科学理解的重要基础,如1788年 J. Hutton 洪堡科学,19世纪的地球理论(Humboldtian science,德国科学家指国科学家 Alexander von Humboldt 1926年发起的科学运动)和 V. Vernadsky 生物圈[7]。然而,地球系统科学的萌芽始于20世纪下半叶的冷战背景,当时地球科学和环境科学发生了重大变化[8]。然而,地球系统科学的萌芽始于20世纪下半叶的冷战背景,当时地球科学和环境科学发生了重大变化[8]。由于军事发展的需要,地球物理学获得了前所未有的发展机遇[9]。此外,调查和监测全球环境已成为未来为现代地球系统科学提供信息[10-11]的战略必要条件。
生态与环境科学的发展也非常迅速[16]。生态系统生态学(Ecosystem ecology)诞生于 E. Hutchinson 及 H. Odum 和 G.E. Odum 两兄弟的研究成果和环境问题科学委员会(Scientific Committee on Problems of the Environment,SCOPE)的支持。国际生物计划(International Biological Programme,IBP)[17]等大型项目是全球生态研究的重要基石,为理解生物圈在整个地球系统运行中的作用提供了坚实的基础[18-22]。
至上世纪60到70年代,科学界和公众对环境问题的意识在不断增强。R. Carson《寂静的春天》的出版[23]、1972年联合国人类环境会议上“只有一个地球”的演讲[24]、关于臭氧消耗和气候变化的首次警报[25-26]以及罗马俱乐部出版的《增长的极限》,无不在持续推动人们对环境的认识[27]。《增长的极限》一书警告,资源枯竭和环境污染将限制经济增长[28]。而随后1972年12月7日阿波罗17号航天器上的宇航员拍摄的“蓝色弹珠(The Blue Marble)”图片,向公众突出了地球的整体性,更展现了地球的脆弱性[29-31]。
1986年,国际科学理事会(International Council for Science,ICSU)成立了国际地圈-生物圈计划 [5,43-45],并加入了世界气候研究计划(World Climate Research Proramme,WCRP),解决了国际投入和跨学科融合的挑战[46]。国际地圈-生物圈计划最初是为地球系统中生物地球化学方面的一些核心主题构建的:海洋碳循环、陆地生态系统、大气化学、水文循环等。国际地圈-生物圈计划中 PAGES(过往全球变化)和 GAIM(全球分析、综合和建模)两个项目,由于学科融合程度强而备受重视。此外,国际地圈-生物圈计划还专门开展了一个数据和信息系统,尤其针对遥感数据的项目,以支持这项研究。
于1996年成立的国际全球环境变化人文因素计划(International Human Dimensions Proramme on Global Environmental change,IHDP),为社会科学研究提供了一个全球平台,探讨了导致地球系统变化的人类影响因素,以及地球系统的变化对人类和社会福祉的影响[54]。包括 WCRP、IGBP、DIVERSITAS 和 IHDP 在内的全球国际研究计划体系给不同学科的国际科学家提供了“工作空间”,让他们能聚集在一起,这对地球系统科学的发展至关重要。在21世纪初,这一整套更完整的全球变化规划与“可持续性”概念的出现[55],催生出可持续性科学(sustainability science)[56]。
20世纪90年代末,H. J. Schellnhuber 引入并发展了两个对地球系统科学至关重要的概念[57-58]:
于2001年举办的“地球变化的挑战”国际会议吸引了来自105个国家(其中62个是发展中国家)的1400名与会者。会议由四个国际全球变化计划(IGBP、WCRP、IHDP、DIVERSITAS)共同主办,介绍了国际地圈-生物圈计划综合项目中诞生的《阿姆斯特丹宣言》,并促成了地球系统科学联盟(Earth System Science Partnership,ESSP)的成立,将基础的地球系统科学与对人类福祉息息相关的问题——食物、水、健康和碳/能源——联系起来[61]。2002年成为国际科学理事会(ICSU)主席的 J. Lubchenco 对可持续发展科学的强调促进了地球系统科学和全球可持续发展社区的融合。
更复杂的地球系统模型——大气环流模型(General Circulation Models,GCMs)也随之发展。大气环流模型基于气候系统的物理和化学,包括地球表面(陆地、海洋、冰,以及越来越多的生物圈)与大气之间的能量和物质的交换[86-87]。大气环流受人类温室气体和气溶胶排放影响,通过政府间气候变化专门委员会( Intergovernmental Panel on Climate Change,IPCC)的评估,能够预测未来气候可能的发展趋势和影响,为政策和治理提供信息。然而,由于参数化以及忽略或没有充分考虑对反馈过程和地圈与生物圈之间相互作用[88-89]的约束,大气环流模型的长期预测存在相当大的不确定性。此外,大气环流模型并没有将人类影响作为模型中不可分割的、相互作用的一部分,而是将人类的影响视为干扰生物地球物理地球系统的一种外力。
综合评估模型
人类动力学作为综合评估模型(Integrated Assessment Models,IAMs)的领域,通常将复杂程度不同的经济模型与复杂程度经过简化的气候模型耦合在一起[90-93]。综合评估模型有许多用途,例如:模拟特定气候下稳定政策的成本、根据一系列潜在政策探索气候风险和不确定性、确定特定气候目标下的最优政策,并对耦合系统内的反馈提供更全面的见解[94]。此外,综合评估模型还提供了未来温室气体和气溶胶排放情况的关键信息,这些信息可用于大气环流模拟。然而,综合评估模型的经济组分却很少与大气环流模型耦合,未能构建一个完全融合的地球系统模型。早期的一个例子是麻省理工学院综合全球系统模型(MIT Integrated Global System Model),它将一般均衡经济学的可计算模型(computable general equilibrium,CGE)与复杂的大气环流模型耦合[95-96]。
地球系统的中间复杂性模型
探索地球系统的复杂动力学,特别是在长时间尺度上,最强大的工具则是地球系统的中间复杂性模型(Earth system Models of Intermediate Complexity,EMICs)[97]。地球系统的中间复杂性模型包含与大气环流模型相同的主要过程,但它的空间分辨率较低,参数化过程较多,并支持更长的时间尺度模拟。该模型的模拟包含非线性作用力和地球系统各组分之间的反馈。例如,它可以在数十万年的时间尺度上进行模拟,根据古观测的结果进行检验,并探索遥远未来可能的气候[98-99]。总之,大气环流模型、综合评估模型和地球系统的中间复杂性模型为探索不同时空尺度上的地球系统动力学提供了强有效的方法。
“人类世”一词最初是20世纪80年代初 E. Stoermer 在淡水湖沼研究(freshwater limnology research)的特定背景下提出的。2000年,当这个短语重新被 P. Crutzen 独立地引入后[139,140],它在自然科学、社会科学和人文科学领域迅速传播开来。2000年提出的人类世有两层含义。在地质学背景下,Crutzen 提出人类世是地质时间尺度[140]中继全新世之后的一个新时代。与持续11700年且相对稳定的全新世不同,人类世在地球系统的背景下快速发展[60]。这两个定义虽然不完全相同,但有很多共同点[141]。
人类世的主要证据是大加速图("Great Acceleration" graphs),该图来自国际地圈-生物圈计划综合项目,突出了社会经济和地球系统的未来趋势[60,117,143];还证明了地球系统从全新世的快速衰退与20世纪中期以来人类事业的爆炸性增长直接相关。尽管这对地球系统科学来说很新奇,但历史学家 J. McNeill 已经对大加速进行了深入的探索[144]。
为了响应 Crutzen(2002)的建议,人类世应正式被纳入地质时间尺度[140],人类世工作组(Anthropocene Working Group,AWG)于2009年由第四纪地层学小组委员会(Subcommission on Quaternary Stratigraphy,SQS)成立。2019年,经过十年的研究、出版、讨论和激烈辩论,人类世工作组正式决议:将人类世视为由全球边界层型剖面和点(Global boundary Stratotype Section and Point,GSSP)定义的正式年代地层单位,人类世的基准起始日期应为20世纪中期的一个地层标志[145-147]。
图6.作为人类世的主要证据的大加速图,反映了社会经济(a)及地球系统(b)重要指标的演化趋势。| 来源:Steffen W, Broadgate W, Deutsch L, Gaffney O, Ludwig C. The trajectory of the Anthropocene: The Great Acceleration. The Anthropocene Review. 2015;2(1):81-98. doi:10.1177/2053019614564785
然而,要理解人类动力学,需要的不仅仅是技术。21世纪20年代的地球系统科学可以结合不断发展的创新研究和政策理念,提高我们对人类圈的理解。例如,从生物物理维度(例如气候)到社会科学和人文科学,都对地球系统发展趋势的预测提供了非常广泛的视角[90,116,136]。在政策领域,较早的以人为中心的千年发展目标现在已被可持续发展目标所取代。可持续发展目标保留了对发展、公平和其他人类问题的强烈关注,并将其纳入更广泛的地球系统背景之中。在所有新方法中,最具创新性的方法之一是“人类共同家园(Common Home of Humanity)”,它提出地球系统本身的稳定和适应性状态(即美国公共电视网定义的类似全新世的状态)应该在法律上被正式视为全人类的非物质自然遗产[137]。
[1]Vernadsky, V.I. La Géochimie, Librairie Félix Acan, Paris. (Lectures at the Sorbonne in 1922-23) (1924)
[2]Vernadsky, V.I. The Biosphere (complete annotated edition: Foreword by Lynn Margulis and colleagues, introduction by Jacques Grinevald, translated by David B. Langmuir, revised and annotated by Mark A.S. McMenamin). Copernicus (Springer-Verlag), New York, 192 pp. (1998 [1926])
[3]Lovelock, J. Gaia: A New Look at Life on Earth. Oxford University Press, 176pp. (1979).
[4]NASA (National Aeronautics and Space Administration) Earth System Science Overview. A program for global change. Prepared by the Earth System Sciences Committee, NASA Advisory Council. 48pp. (1986)
[5]Dutreuil, S. Gaïa: hypothèse, programme de recherche pour le système Terre, ou philosophie de la nature? Phd Thesis, Université Paris 1 Panthéon-Sorbonne, Paris, 859pp. (2016).
[6]Lenton, T.M. Earth System Science. A Very Short Introduction. Oxford, Oxford University Press, 153pp. (2016).
[7]Grinevald, J. La Biosphère de l’Anthropocène: climat et pétrole, la double menace. Repères transdisciplinaires (1824–2007). Geneva, Switzerland: Georg/Editions Médecine & Hygiène (2007).
[8]Oreskes, N. & Krige, J. Science and Technology in the Global Cold War. MIT Press, Cambridge MA, 464pp. (2014).
[9]Doel, R.E. Constituting the Postwar Earth Sciences: The Military’s Inflfluence on the Environmental Sciences in the USA after 1945, Social Studies of Science 33, 635–666(2003).
[10]Turchetti, S. & Roberts, P. The surveillance imperative: geosciences during the Cold War and beyond. Palgrave MacMillan, New York, 278pp. (2014)
[11]Hamblin, J.D. Arming mother nature: the birth of catastrophic environmentalism. Oxford University Press, Oxford, 320pp. (2013).
[12]Beynon, W.J.G. (ed) Annals of the International Geophysical Year. Pergamon Press, 179pp. (1970).
[13]Oreskes, N. & Doel, R.E. The Physics and Chemistry of the Earth. In M. Nye (ed.), The Cambridge History of Science, Vol. 5, The Modern Physical and Mathematical Sciences, Cambridge: Cambridge University Press, pp. 538-557 (2008).
[14]Edwards, P.N. A vast machine: Computer models, climate data, and the politics of global warming, The MIT Press, Cambridge, MA, 552pp. (2010).
[15]Oreskes, N. The rejection of continental drift: Theory and method in American Earth science, Oxford University Press, Oxford, 432pp. (1999).
[16]Warde, P., Robin, L. & Sörlin, S. The Environment. A History of the Idea. Johns Hopkins University Press, Baltimore. 244pp. (2018)
[17]IBP (International Biological Programme) http://www.nasonline.org/aboutnas/history/archives/collections/ibp-1964-1974-1.html. Accessed on 15 April 2019 (2019).
[18]Aronova, E., Baker, K.S. & Oreskes, N. Big science and big data in biology: from the International Geophysical Year through the International Biological Program to the Long Term Ecological Research (LTER) network, 1957 –present. Historical Studies in the Natural Sciences 40, 183–224 (2010).
[19]Grinevald, J. Sketch for the history of the idea of the biosphere. In: Bunyard, P. (ed) Gaia in Action: Science of the Living Earth, Floris Books, Edinburgh, pp. 34–53 (1996).
[20]Grienvald, J. The invisibility of the vernadskian revolution. pp. 20-32 in: Vernadsky V, The biosphere, Copernicus (Springer-Verlag), New York, 192 pp. (1998).
[21]Kwa, C. Representations of nature mediating between ecology and science policy: the case of the International Biological Programme. Social Studies of Science 17, 413–442 (1987).
[22]Kwa, C. Modeling the grasslands. Historical Studies in the Physical and Biological Sciences 24, 125–155 (1993).
[23]Carson, R. Silent Spring. Houghton Mifflin, 368pp. (1962).
[25]Farman, J.C., Gardiner, B.G. & Shanklin, J.D. Large losses of total ozone in Antarctica reveal seasonal interaction. Nature 315, 207-210 (1985).
[26]Besel, R.D. (2013) Accommodating climate change science: James Hansen and the rhetorical/political emergence of global warming". Science in Context 26, 137–152. doi:10.1017/S0269889712000312 (2013).
[27]Meadows, D.H., Meadows, D.L., Randers, J. & Behrens III, W.W. (1972) Limits to Growth. Potomic Associates - Universe Books, 205pp. (1972).
[28]Vieille Blanchard, E. Les limites à la croissance dans un monde global: modélisations, prospectives, refutations, PhD thesis, Ecole des Hautes Etudes en Sciences Sociales, 692 pp. (2011).
[29]Poole, R. Earthrise: How man fifirst saw the Earth. Yale University Press, New Haven,236pp. (2008).
[30]Grevsmühl, S.V. Images, imagination and the global environment: towards an interdisciplinary research agenda on global environmental images. Geo 3 https://rgsibg.onlinelibrary.wiley.com/doi/full/10.1002/geo2.20 (2016).
[31]Höhler, S. Spaceship Earth in the environmental age,1960-1990. Routledge, London, 256pp. (2015).
[32]Lovelock, J. & Margulis, L. Atmospheric homeostasis by and for the biosphere: the Gaia hypothesis. Tellus 26, 2–10 (1974).
[34]Kirchner, J. The Gaia hypothesis: can it be tested? Rev. Geophysics 27, 223–235 (1989).
[35]Lovelock, J. & Whitfield, M. Life span of the biosphere. Nature 296, 561–563 (1982). [36]Charlson, R.J., Lovelock, J.E., Andreae, M.O. & Warren, S.G. Oceanic phytoplankton, atmospheric sulphur, cloud albedo and climate. Nature 326, 655-661 (1987).
[37]Dutreuil, S. James Lovelock’s Gaia Hypothesis: “A New Look at Life on Earth” . . . for the Life and the Earth Sciences, pp.272-287 in: Dietrich, M.R. & Harman, O: Dreamers, visionaries and revolutionaries in the life sciences, The University of Chicago Press, Chicago, 336pp. (2017).
[38]Latour, B. Facing Gaia. Eight Lectures on the New Climatic Regime. Polity Press (2017).
[39]Waldrop, M.M. (1986) Washington embraces global earth sciences. Science 233, 1040–1042. (1986)
[40]Edelson, E. Laying the foundation. MOSAIC, 19(3-4), 4–11 (1988).
[41]Conway, E.M. Atmospheric science at NASA: a history, John Hopkins University Press, Baltimore, 416pp. (2008).
[42]Bretherton, F.P. Earth system science and remote sensing. Proceedings of the IEEE, 73, 1118–1127 (1985).
[43]Kwa, C. Local ecologies and global science discourses and strategies of the International Geosphere-Biosphere Programme. Social Studies of Science 35, 923–950 (2005).
[44]Kwa, C. The programming of interdisciplinary research through informal sciencepolicy interactions. Science and Public Policy 33, 457–467 (2006).
[45]Uhrqvist, O. Seeing and knowing the Earth as a system: an effective history of global environmental change research as scientifific and political practice, PhD Thesis, Linköping University (2014).
[46]WCRP (World Climate Research Programme) https://www.wcrp-climate.org (2019). [47]Richardson, K. & Steffen, W. Network of cooperation between science organizations. In: Handbook of Science and Technology Convergence. Springer International Publishing Switzerland. DOI 10.1007/978-3-319-04033-2_80-1 (2014).
[48]Brundtland Commission. Our Common Future: Report of the World Commission on Environment and Development. Oxford University Press, 383pp. (1987)
[49]Roederer, J.G. ICSU gives green light to IGBP. EOS Trans. Am. Geophysical Union 67, 777-781 (1986).
[50]Lubchenco, J. et al. The Sustainable Biosphere Initiative: An Ecological Research Agenda. Ecology 72, 371-412 (1991).
[51]Huntley, B.J. et al. A sustainable biosphere: the global imperative. The International Sustainable Biosphere Initiative. Ecology International 20, 1-14 (1991).
[52]IUBS (International Union of Biological Sciences) https://web.archive.org/web/20130602185409/http://www.iubs.org/iubs/diversitas.html (2014).
[53]Vitousek, P.M., Mooney, H.A., Lubchenco, J. & Melillo, J.M. Human domination of Earth’s ecosystems. Science 277, 494-499 (1997).
[54]IHDP (International Human Dimensions Programme on Global Environmental Change) About IHDP. http://www.ihdp.unu.edu/pages/?p=about (2014).
[55]Clark, W.C. & Munn, R.E. Sustainable development of the biosphere. Cambridge University Press, Cambridge, 491pp. (1986).
[56]Kates, R.W. et al. Sustainability science. Science 292, 641-642 (2001).
[57]Schellnhuber, H.J. Earth System analysis: the scope of the challenge. In: Schellnhuber, H.J. & Wentzel, V. (eds) Earth System Analysis. Integrating Science for Sustainability. Springer-Verlag Berlin Heidelberg New York, pp. 3-195 (1998).
[58]Schellnhuber, H.J. ‘Earth system’ analysis and the second Copernican revolution. Nature402, C19-C23 (1999).
[59]Crutzen, P.J. My life with O3, NOx and other YZOxs, in Les Prix Nobel (The Nobel Prizes). Almqvist & Wiksell International, Stockholm, pp.123-157 (1995).
[60]Steffen, W. et al. Global Change and the Earth System: A Planet Under Pressure. The IGBP Book Series, Springer-Verlag, Berlin, Heidelberg, New York, 336 pp. (2004).
[61]Leemans, R. et al. Developing a common strategy for integrative global environmental change research and outreach: the Earth System Science Partnership (ESSP). Current Opinion in Environmental Sustainability 1, 4-13 (2009).
[62]Seitzinger, S. et al. International Geosphere-Biosphere Programme and Earth system science: Three decades of co-evolution. Anthropocene 12, 3-16 (2015).
[63]Harris, D.C. Charles David Keeling and the story of atmospheric CO2 measurements. Anal. Chem. 82, 7865-7870. doi.org/10.1021/ac1001492 (2010).
[64]Le Quéré, C. et al. Global Carbon Budget 2018. Earth System Science Data Discussions 10, 1-54. https://doi.org/10.5194/essd-10-1-2018 (2018).
[65]Conway, E.M. Drowning in data: Satellite oceanography and information overload in the Earth sciences. Historical Studies in the Physical and Biological Sciences 37, 1 (2006).
[66]Toth, C. & Jóźków, G. Remote sensing platforms and sensors: A survey. ISPRS Journal of Photogrammetry and Remote Sensing 115, 22-36. doi.org/10.1016/j.isprsjprs.2015.10.004 (2016)
[67]Silsbe, G.M., Behrenfeld, M.J., Halsey, K.H., Milligan, A.J., & Westberry, T.K. The CAFE model: A net production model for global ocean phytoplankton. Global Biogeochemical Cycles 30, 1756–1777, doi:10.1002/2016GB005521. (2016).
[68]Yang, Y., Donohue, R.J. & McVicar, T.R. Global estimation of effective plant rooting depth: Implications for hydrological modeling. Water Resour. Res. 52, 8260–8276. doi:10.1002/2016WR019392. (2016).
[69]NOAA (National Ocean and Atmospheric Administration) Earth System Research Laboratory (ESRL), Global Monitoring Division. https://www.esrl.noaa.gov/gmd/ (2019)
[70]Ramanathan, V., Crutzen, P.J., Mitra, A.P. & Sikka, D. The Indian Ocean Experiment ad the Asian brown cloud. Current Science 83, 947-955 (2002).
[72]Broecker, W.S., Takahashi, T., Simpson, H.J. & Peng, T-H. Fate of fossil fuel carbon dioxide and the global carbon budget. Science 206, 409-418 DOI: 10.1126/science.206.4417.409 (1979).
[73]Petit, J.R. et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399, 429-436 (1999).
[74]PAGES (Past Interglacial Working Group of Past Global Changes) Interglacials of the last 800,000 years. Rev. Geophys. 54, doi:10.1002/2015RG000482 (2016).
[76]McInerney, F.A. & Wing, S.L. The Paleocene-Eocene Thermal Maximum – a perturbation of carbon cycle, climate, and biosphere with implications for the future. Ann. Rev. Earth Planetary Sci. 39, 489-516 (2011).
[77]Williamson, P. et al. Ocean fertilization for geoengineering: A review of effectiveness, environmental impacts and emerging governance. Process Safety and Environmental Protection 90, 475–488 (2012).
[78]Norby, R.J. & Zak, D.R. Ecological lessons from Free-Air CO2 Enrichment (FACE) experiments. Annual Review of Ecology, Evolution and Systematics 42: 181-203 (2011).
[79]Aronson, E. & McNulty, S.G. Appropriate experimental ecosystem warming methods by ecosystem, objective, and practicality. Agric. Forest Meteorol. 149, 1791-1799 (2009).
[80]Levin, S. Fragile Dominion: Complexity and the Commons. Helix Books, 292pp. (1999)
[81]Lenton, T.M. et al. Tipping elements in Earth’s climate system. Proc Nat. Acad. Sci USA 105, 1786-1793 (2008).
[82]Scheffer, M. Critical Transitions in Nature and Society, Princeton University Press (2009).
[83]Budyko, M.I. The effect of solar radiation on the climate of the earth. Tellus 21, 611-619 (1969).
[84]Sellers, W. A climate model based on the energy balance of the earth-atmosphere system. J. Applied Meteorology 8, 392-400 (1969).
[85]Watson, A. & Lovelock, J. Biological homeostasis of the global environment: the parable of Daisyworld. Tellus B, 35, 284–289 (1983).
[86]Dahan, A. Putting the Earth System in a numerical box? The evolution from climate modelling toward global change. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics 41, 282-292 (2010).
[87]Flato, G. et al. Evaluation of Climate Models. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F. et al. (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. (2013).
[88]Kiehl, J.T. & Shields, C.A. Sensitivity of the Palaeocene–E