1.前一阶段的问题
我接触了大约一段时间silvaco,根据《InP基PIN本文提供的开关二极管结构设计与制备结构及一些简单参数进行模拟。因为我已经工作了,没有老师自己探索。在学习过程中,我或多或少地看到了很多人写的经验或理解。但是Z希望我能专注于效应(我猜他指的是model和material参数)对模拟结果的影响。这部分资料很少看到,所以我也会写下我的学习过程。也希望能有遇到同样问题的人一起讨论。
首先简单记录一下我这篇文章的结构模拟遇到的问题:
1、最开始是用devedit画PIN管道结构,但最终模拟I-V曲线似乎与atlas通过语句(mesh、region、electron、doping)结构模拟的直接定义I-V曲线不同。这一点需要验证,可能是我粗心大意,缺乏参数。
2、这种重掺杂InP基,InGaAs同质结的PIN二极管不修改x.composition(同理y.composition)、NC300、NV300(或者其他我还没找到的参数),这个结构的能带从一开始就是简化半导体的能带。但是silvaco自带的example修改很少NC300和NV300.如果有修改,这两个值通常设置为相同;参考altas_user_manual里6.4节计算出的NC300和NV300也同样与example参数不同(计算参数较大)。
3、模拟曲线,什么样的参数会对曲线的某一点和范围产生什么样的影响,以确保模拟曲线符合物理。
2.mobility models
还是最简单的diode(example里的diodeex03.in结构)开始理解model中的Mobility models。具体model的介绍在manual的3.6.1节。Manual迁移率模型大致可分为四种:低电场行为(low filed behavior),高电场行为(high filed behavior),体半导体区(bulk semiconductor regions),反型层(inversion layers)。
The low electric field behavior has carriers almost in equilibrium with the lattice and the mobility has a characteristic low-field value that is commonly denoted by the symbolμn0,μp0. The value of this mobility is dependent upon phonon and impurity scattering. Both of which act to decrease the low-field mobility.
The high electric field behavior shows that the carrier mobility declines with electric field because the carriers that gain energy can take part in a wider range of scattering processes. The mean drift velocity no longer increases linearly with increasing electric field, but rises more slowly. Eventually, the velocity doesn’t increase any more with increasing field but saturates at a constant velocity. This constant velocity is commonly denoted by the symbol Vsat. Impurity scattering is relatively insignificant for energetic carriers, and so Vsat is primarily a function of the lattice temperature.
Modeling mobility in bulk material involves: (i) characterizingμn0 andμp0 as a function of doping and lattice temperature, (ii) characterizing Vsat as a function of lattice temperature, and (iii) describing the transition between the low-field mobility and saturated velocity regions.
Modeling carrier mobilities in inversion layers introduces additional complications. Carriers in inversion layers are subject to surface scattering, extreme carrier-carrier scattering, and quantum mechanical size quantization effects. These effects must be accounted for in order to perform accurate simulation of MOS devices. The transverse electric field is often used as a parameter that indicates the strength of inversion layer phenomena.
(摘自atlas_users1)
低电场使载流子几乎与晶格平衡(这里不懂),具有迁移率特征的低电场值通常使用符号μn0、μp0表示。这种迁移率的大小取决于声子和杂质散射。两者都降低了电场迁移率。
高电场的行为表明,载流子的迁移率随着电场的增加而下降,因为获得能量的载流子可以参与更广泛的散射过程。随着电场的增加,平均漂移速度不再线性增加,而是缓慢增加。最后,速度不再随电场的增加而增加,而是以恒定的速度饱和。这种恒定速度通常使用符号Vsat表示。杂质散射对含能载流子相对不重要,因此Vsat主要是晶格温度的函数。
体半导体区的迁移率包括:(i)将μn0和μp描述为掺杂和晶格温度的函数,(ii)将Vsat描述晶格温度的函数,以及(iii)描述低场迁移率与饱和速度区域之间的转换。
在反转层中模拟载流子迁移率会带来额外的复杂性。反转层中的载流子受表面散射、极端载流子散射和量子力学尺寸量子化效应的影响。MOS要准确模拟设备,必须考虑这些影响。水平电场通常被用作指示反转层现象强度的参数。
以上是理解后的翻译,但看英语真的很难...感觉语义理解总是有偏差,所以直接看程序print理解结果manual。这次尝试经常看到的。conmob、analytic、arora、ccsmob、fldmob、watt、kla、cvt。先研究前三个,根据下表manual的summary看,conmob是基本的迁移率模型,analytic温度因素比他多,arora是在Si中替代analytic的模型?

2.1.conmob
调用不同的model,print的信息不同
REGIONAL MOBILITY MODEL SUMMARY:
Region #1:
Model for Electrons:
Concentration Dependent Mobility
@ Temperature = 300 Kelvin
Using built-in model (refer to manual).
Model for Holes:
Concentration Dependent Mobility
@ Temperature = 300 Kelvin
Using built-in model (refer to manual).
2.2.analytic
REGIONAL MOBILITY MODEL SUMMARY:
Region #1:
Model for Electrons:
Concentration Dependent Mobility
@ Temperature = 300 Kelvin
Using Caughey-Thomas model.
mu1 = 55.24
mu2 = 1429.23
alpha = 0
beta = -2.3
gamma = -3.8
delta = 0.73
ncrit = 1.072e+17
Model for Holes:
Concentration Dependent Mobility
@ Temperature = 300 Kelvin
Using Caughey-Thomas model.
mu1 = 49.7
mu2 = 479.37
alpha = 0
beta = -2.2
gamma = -3.7
delta = 0.7
ncrit = 1.606e+17
2.3.conmob+analytic
REGIONAL MOBILITY MODEL SUMMARY:
Region #1:
Model for Electrons:
Concentration Dependent Mobility
@ Temperature = 300 Kelvin
Using Caughey-Thomas model.
mu1 = 55.24
mu2 = 1429.23
alpha = 0
beta = -2.3
gamma = -3.8
delta = 0.73
ncrit = 1.072e+17
Model for Holes:
Concentration Dependent Mobility
@ Temperature = 300 Kelvin
Using Caughey-Thomas model.
mu1 = 49.7
mu2 = 479.37
alpha = 0
beta = -2.2
gamma = -3.7
delta = 0.7
ncrit = 1.606e+17
可以从analytic和conmob+analytic的print结果以及manual的描述推测定义conmob和analytic参数都会激活此模型。
2.4.arora
REGIONAL MOBILITY MODEL SUMMARY:
Region #1:
Model for Electrons:
Concentration Dependent Mobility
@ Temperature = 300 Kelvin
Using Arora model.
mu1 = 88
mu2 = 1252
alpha = -0.57
beta = -2.33
gamma = 2.546
ncrit = 1.432e+17
Model for Holes:
Concentration Dependent Mobility
@ Temperature = 300 Kelvin
Using Arora model.
mu1 = 54.3
mu2 = 407
alpha = -0.57
beta = -2.33
gamma = 2.546
ncrit = 2.67e+17
2.5.analytic+conmob+arora
REGIONAL MOBILITY MODEL SUMMARY:
Region #1:
Model for Electrons:
Concentration Dependent Mobility
@ Temperature = 300 Kelvin
Using Arora model.
mu1 = 88
mu2 = 1252
alpha = -0.57
beta = -2.33
gamma = 2.546
ncrit = 1.432e+17
Model for Holes:
Concentration Dependent Mobility
@ Temperature = 300 Kelvin
Using Arora model.
mu1 = 54.3
mu2 = 407
alpha = -0.57
beta = -2.33
gamma = 2.546
ncrit = 2.67e+17
到目前为止,先将这三个模型的组合输出正向曲线。
看起来三个模型都没有对阈值电压产生影响,电流的趋势是一样的。似乎进入了瓶颈,我原本以为三个模型会有很大差别。
2.6 一些想法
Mobility models有五类: 1.用MUN和MUP参数来设置电子和空穴的常数。 2.查找表(CONMOB)参数将300K下的低电场迁移率与杂质联系起来。 3.选择低电场迁移率模型,ANALYTIC、ARORA或MASETTI,将低电场载流子迁移率与杂质浓度和温度联系起来。 4.选择载流子-载流子散射模型(CCSMOB、CONWELL或BROOKS),该模型将低电场迁移率与载流子浓度和温度联系起来。 5.使用统一的低电场迁移率模型(KLASSEN),该模型将低场迁移率与施主、受主、晶格、载流子-载流子散射和温度联系起来。
(摘自atlas_users1)
先说第一个问题,Z的想法是如下两张图(图5、图6)。 “在v还保持线性变化的阶段,是不是就可以认为是低场强,之后可以看作是新的模型主导。”
无言以对,好像很有道理。由于没看到manual里面有更准确的解释,就暂时这么理解吧。
想了好几种方法比较ANALYTIC、ARORA。用excel列了一下。Highlight的是计算出的μn0(暂时都只算n),红色参数实际在arora中没有用到,统一都用的是analytic的硅默认参数(arora的硅默认参数与analytic不同,想控制变量),光看μn0好像看不出啥。
换个思路…把变量控制为温度和浓度。很明显可以看出两个模型下,随着温度的变化呈现相反的趋势,浓度的趋势大体相同,Arora的解释还有一个是“Alternative to ANALYTIC for Si”。