[1] M. A. Lebedev, Y. V. Vizilter, O. V. Vygolov, V. A. Knyaz, and A. Y. Rubis, “Change detection in remote sensing images using conditional adversarial networks,” ISPRS Int. Arch. Photogramm., Remote Sens. Spatial Inf. Sci., vol. XLII-2, pp. 565–571, May 2018.
[2] W. A. Malila, “Change vector analysis: An approach for detecting forest changes with Landsat,” in Proc. LARS Symposia, 1980, p. 385.
[3] T. Celik, “Unsupervised change detection in satellite images using principal component analysis and k-means clustering,” IEEE Geosci.Remote Sens. Lett., vol. 6, no. 4, pp. 772–776, Oct. 2009.
[4] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks for biomedical image segmentation,” in Proc. Int. Conf. Med.Image Comput. Comput.-Assist. Intervent., Cham, Switzerland: Springer,2015, pp. 234–241.
[5] R. Caye Daudt, B. Le Saux, and A. Boulch, “Fully convolutional Siamese networks for change detection,” in Proc. 25th IEEE Int. Conf. Image Process. (ICIP), Oct. 2018, pp. 4063–4067.
[6] F. Rahman et al., “Siamese network with multi-level features for patchbased change detection in satellite imagery,” in Proc. IEEE Global Conf.Signal Inf. Process. (GlobalSIP), Nov. 2018, pp. 958–962.
[7] Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, “Change detection based on deep Siamese convolutional network for optical aerial images,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10,pp. 1845–1849, Oct. 2017.
[8] E. Guo et al., “Learning to measure change: Fully convolutional Siamese metric networks for scene change detection,”2018,arXiv:1810.09111.[Online].Available: http://arxiv.org/abs/1810.09111
[9] C. Zhang et al., “A deeply supervised image fusion network for change detection in high resolution bi-temporal remote sensing images,” ISPRS J. Photogramm. Remote Sens., vol. 166, pp. 183–200, Aug. 2020.
[10] H. Chen and Z. Shi, “A spatial-temporal attention-based method and a new data set for remote sensing image change detection,” Remote Sens.,vol. 12, no. 10, p. 1662, 2020.
[11] J. Chen et al., “DASNet: Dual attentive fully convolutional Siamese networks for change detection of high resolution satellite images,”2020, arXiv:2003.03608. [Online]. Available: http://arxiv.org/abs/2003.03608
[12] D. Peng, Y. Zhang, and H. Guan, “End-to-end change detection for high resolution satellite images using improved UNet++,” Remote Sens.,vol. 11, no. 11, p. 1382, 2019.
[13] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks for semantic segmentation,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 3431–3440.
[14] Z. Zhou et al., “UNet++: A nested u-net architecture for medical image segmentation,” in Deep Learning in Medical Image Analysis and Multi-modal Learning for Clinical Decision Support. Cham, Switzerland:Springer, 2018, pp. 3–11.
[15] Z. Zhou et al., “UNet++: Redesigning skip connections to exploit multi-scale features in image segmentation,” IEEE Trans. Med. Imag.,vol. 39, no. 6, pp. 1856–1867, Dec. 2019.
[16] G. Huang, M. M. R. Siddiquee, M. Tajbakhsh, and J. Liang, “Densely connected convolutional networks,” in Proc. IEEE Conf. Comput. Vis.Pattern Recognit., Jul. 2017, pp. 4700–4708.
[17] S. Woo, J. Park, J.-Y. Lee, and I. S. Kweon, “Cbam: Convolutional block attention module,” Proc. Eur. Conf. Comput. Vis. (ECCV), Sep. 2018,pp. 3–19.
[18] K. He, X. Zhang, S. Ren, and J. Sun, “Identity mappings in deep residual networks,” in Proc. Eur. Conf. Comput. Vis., Cham, Switzerland:Springer, 2016, pp. 630–645.
[19] J. Fu et al., “Dual attention network for scene segmentation,” in Proc.IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,pp. 3146–3154.
[20] S. Zagoruyko and N. Komodakis, “Wide residual networks,” 2016,arXiv:1605.07146. [Online]. Available: http://arxiv.org/abs/1605.07146