资讯详情

(Python)卫星RPC有理多项式模型读取与正反投影坐标计算原理与实现

(Python)卫星RPC多项模型模型读取和正反投影坐标的计算原理

文章目录

  • (Python)卫星RPC多项模型模型读取和正反投影坐标的计算原理
    • 摘要
    • RPC介绍几何定位模型
    • RPC实现模型库代码
      • Rpc模型库
      • 使用示例
    • 实验结果
        • 精度评估
        • 性能评估

摘要

在航天摄影测量领域,RPC该模型是卫星几何定位的通用模型。作为基础构件,RPC模型是后续的前交会(三角),区域网平差,DSM生成的基础。但笔者在实际使用中发现了网上的相关信息RPC模型开源代码好坏参半,有的详细介绍但没有代码,很难找到一组易用的代码RPC模型库。经过搜索测试,笔者发现s2p作者开源的rpm具有完善的功能和清晰的代码,作者对其进行了轻微的修改和整理,并添加了注释,使其成为大多数国内卫星RPC处理的单文件功能库主要包括:1。RPC模型;2.RPC模型正投影,即地理坐标计算像素坐标;3.RPC模型逆投影,经纬度计算为像素坐标和高程。基于这个简单的小库,后续也会做一些应用演示。

本文首先介绍了RPC几何定位模型的基本知识,然后提供了RPC模型代码的实现和简单的使用示范,最终评估了代码的精度和性能。

RPC介绍几何定位模型

由于成像过程中诸多复杂因素的影响,卫星遥感图像产生了不同程度的几何变形。建立遥感图像几何定位模型可以正确描述每个图像坐标与相应地面物方坐标之间的严格几何关系,从而纠正原始图像的高精度几何和地面目标定位,从而实现二维图像反映地面平面或空间位置,满足各种遥感应用的需要。

各种传感器模型已经建立起来描述地面空间坐标与相应像点坐标的数学关系.物理模型广泛应用于传统的摄影测量领域.该模型的处理技术已成熟,定位精度较高.但由于物理传感器模型涉及传感器的物理结构、成像模式和各种成像参数.为保护技术秘密,有些公司只使用理函数模型(RFM:Rational Function Model),并提供给用户RFM的参数――多项式系数合理(RPC:Rational Polynomial Coefficients).

RPC它可以理解为一个具有畸变参数的相机模型,它描述了从三维地理坐标到二维卫星图像坐标之间的转换关系,通常称为从物体到像方,我们可以理解为3D到2D,这也被称为正投影,具体为已知lon,lat,h,像素坐标s,l。反向投影是从图像坐标系到地理坐标系,即从图像方到物方。这里需要注意的是,这仍然是3D到2D因为2D不能升维到3D是的,具体是已经s,l,h,求得lon与lat。许多学生会在这个地方感到困惑,注意他们已知的和他们想要的。

RPC模型的正投影表达式如下(截图来自:杨波、王密、皮英冬。只有虚拟控制点的超大区域无控制区域网平差J。测绘学报)

[外链图片转存失败,源站可能有防盗链机制,建议保存图片并直接上传(img-nYRWrwR1-1637063158167)(C:\Users\卫少东\Documents\BaiduNetdiskWorkspace\个人文档\博客写作\国产卫星RPC理性多项模型读取和正反投影坐标计算\body.assets\image-20211116174102785.png)]

逆投影(反投影)是以地理坐标为待求解参数,进行平差迭代求解,各大摄影教科书都有具体原理,这里就不赘述了。

RPC实现模型库代码

Rpc模型库

#命名为:geo_rpc.py """ RPC model parsers, localization, and projection """ import numpy as np from osgeo import gdal  #如果最大迭代次数超过,则报错 class MaxLocalizationIterationsError(Exception):     """ Custom rpcm Exception. """     pass   def apply_poly(poly, x, y, z):     """ Evaluates a 3-variables polynom of degree 3 on a triplet of numbers. 构建三个多项统一模式的单独函数 Args: poly: list of the 20 coefficients of the 3-variate degree 3 polynom, ordered following the RPC convention. x, y, z: triplet of floats. They may be numpy arrays of same length. Returns: the value(s) of the polynom on the input point(s). """     out = 0     out  = poly[0]     out  = poly[1]*y   poly[2]*x   poly[3]*z     out  = poly[4]*y*x + poly[5]*y*z +poly[6]*x*z
    out += poly[7]*y*y + poly[8]*x*x + poly[9]*z*z
    out += poly[10]*x*y*z
    out += poly[11]*y*y*y
    out += poly[12]*y*x*x + poly[13]*y*z*z + poly[14]*y*y*x
    out += poly[15]*x*x*x
    out += poly[16]*x*z*z + poly[17]*y*y*z + poly[18]*x*x*z
    out += poly[19]*z*z*z
    return out


def apply_rfm(num, den, x, y, z):
    """ Evaluates a Rational Function Model (rfm), on a triplet of numbers. 执行20个参数的分子和20个参数的除法 Args: num: list of the 20 coefficients of the numerator den: list of the 20 coefficients of the denominator All these coefficients are ordered following the RPC convention. x, y, z: triplet of floats. They may be numpy arrays of same length. Returns: the value(s) of the rfm on the input point(s). """
    return apply_poly(num, x, y, z) / apply_poly(den, x, y, z)


def rpc_from_geotiff(geotiff_path):
    """ Read the RPC coefficients from a GeoTIFF file and return an RPCModel object. 该函数返回影像的Gdal格式的影像和RPCmodel Args: geotiff_path (str): path or url to a GeoTIFF file Returns: instance of the rpc_model.RPCModel class """
    # with rasterio.open(geotiff_path, 'r') as src:
    #
    dataset = gdal.Open(geotiff_path, gdal.GA_ReadOnly)
    rpc_dict = dataset.GetMetadata("RPC")
    # 同时返回影像与rpc
    return dataset, RPCModel(rpc_dict,'geotiff')

def read_rpc_file(rpc_file):
    """ Read RPC from a RPC_txt file and return a RPCmodel 从TXT中直接单独读取RPC模型 Args: rpc_file: RPC sidecar file path Returns: dictionary read from the RPC file, or an empty dict if fail """
    with open(rpc_file) as f:
        rpc_content = f.read()
    rpc = read_rpc(rpc_content)
    return RPCModel(rpc)

def read_rpc(rpc_content):
    """ Read RPC file assuming the ikonos format 解析RPC参数 Args: rpc_content: content of RPC sidecar file path read as a string Returns: dictionary read from the RPC file """
    import re

    lines = rpc_content.split('\n')

    dict_rpc = { 
        }
    for l in lines:
        ll = l.split()
        if len(ll) > 1:
            k = re.sub(r"[^a-zA-Z0-9_]","",ll[0])
            dict_rpc[k] = ll[1]

    def parse_coeff(dic, prefix, indices):
        """ helper function"""
        return ' '.join([dic["%s_%s" % (prefix, str(x))] for x in indices])

    dict_rpc['SAMP_NUM_COEFF']  = parse_coeff(dict_rpc, "SAMP_NUM_COEFF", range(1, 21))
    dict_rpc['SAMP_DEN_COEFF']  = parse_coeff(dict_rpc, "SAMP_DEN_COEFF", range(1, 21))
    dict_rpc['LINE_NUM_COEFF']  = parse_coeff(dict_rpc, "LINE_NUM_COEFF", range(1, 21))
    dict_rpc['LINE_DEN_COEFF']  = parse_coeff(dict_rpc, "LINE_DEN_COEFF", range(1, 21))

    return dict_rpc

class RPCModel:
    def __init__(self, d, dict_format="geotiff"):
        """ Args: d (dict): dictionary read from a geotiff file with rasterio.open('/path/to/file.tiff', 'r').tags(ns='RPC'), or from the .__dict__ of an RPCModel object. dict_format (str): format of the dictionary passed in `d`. Either "geotiff" if read from the tags of a geotiff file, or "rpcm" if read from the .__dict__ of an RPCModel object. """
        if dict_format == "geotiff":
            self.row_offset = float(d['LINE_OFF'][0:d['LINE_OFF'].rfind(' ')])
            self.col_offset = float(d['SAMP_OFF'][0:d['SAMP_OFF'].rfind(' ')])
            self.lat_offset = float(d['LAT_OFF'][0:d['LAT_OFF'].rfind(' ')])
            self.lon_offset = float(d['LONG_OFF'][0:d['LONG_OFF'].rfind(' ')])
            self.alt_offset = float(d['HEIGHT_OFF'][0:d['HEIGHT_OFF'].rfind(' ')])

            self.row_scale = float(d['LINE_SCALE'][0:d['LINE_SCALE'].rfind(' ')])
            self.col_scale = float(d['SAMP_SCALE'][0:d['SAMP_SCALE'].rfind(' ')])
            self.lat_scale = float(d['LAT_SCALE'][0:d['LAT_SCALE'].rfind(' ')])
            self.lon_scale = float(d['LONG_SCALE'][0:d['LONG_SCALE'].rfind(' ')])
            self.alt_scale = float(d['HEIGHT_SCALE'][0:d['HEIGHT_SCALE'].rfind(' ')])

            self.row_num = list(map(float, d['LINE_NUM_COEFF'].split()))
            self.row_den = list(map(float, d['LINE_DEN_COEFF'].split()))
            self.col_num = list(map(float, d['SAMP_NUM_COEFF'].split()))
            self.col_den = list(map(float, d['SAMP_DEN_COEFF'].split()))

            if 'LON_NUM_COEFF' in d:
                self.lon_num = list(map(float, d['LON_NUM_COEFF'].split()))
                self.lon_den = list(map(float, d['LON_DEN_COEFF'].split()))
                self.lat_num = list(map(float, d['LAT_NUM_COEFF'].split()))
                self.lat_den = list(map(float, d['LAT_DEN_COEFF'].split()))

        elif dict_format == "rpcm":
            self.__dict__ = d

        else:
            raise ValueError(
                "dict_format '{}' not supported. "
                "Should be { 
        {'geotiff','rpcm'}}".format(dict_format)
            )


    def projection(self, lon, lat, alt):
        """ Convert geographic coordinates of 3D points into image coordinates. 正投影:从地理坐标到图像坐标 Args: lon (float or list): longitude(s) of the input 3D point(s) lat (float or list): latitude(s) of the input 3D point(s) alt (float or list): altitude(s) of the input 3D point(s) Returns: float or list: horizontal image coordinate(s) (column index, ie x) float or list: vertical image coordinate(s) (row index, ie y) """
        nlon = (np.asarray(lon) - self.lon_offset) / self.lon_scale
        nlat = (np.asarray(lat) - self.lat_offset) / self.lat_scale
        nalt = (np.asarray(alt) - self.alt_offset) / self.alt_scale

        col = apply_rfm(self.col_num, self.col_den, nlat, nlon, nalt)
        row = apply_rfm(self.row_num, self.row_den, nlat, nlon, nalt)

        col = col * self.col_scale + self.col_offset
        row = row * self.row_scale + self.row_offset

        return col, row


    def localization(self, col, row, alt, return_normalized=False):
        """ Convert image coordinates plus altitude into geographic coordinates. 反投影:从图像坐标到地理坐标 Args: col (float or list): x image coordinate(s) of the input point(s) row (float or list): y image coordinate(s) of the input point(s) alt (float or list): altitude(s) of the input point(s) Returns: float or list: longitude(s) float or list: latitude(s) """
        ncol = (np.asarray(col) - self.col_offset) / self.col_scale
        nrow = (np.asarray(row) - self.row_offset) / self.row_scale
        nalt = (np.asarray(alt) - self.alt_offset) / self.alt_scale

        if not hasattr(self, 'lat_num'):
            lon, lat = self.localization_iterative(ncol, nrow, nalt)
        else:
            lon = apply_rfm(self.lon_num, self.lon_den, nrow, ncol, nalt)
            lat = apply_rfm(self.lat_num, self.lat_den, nrow, ncol, nalt)

        if not return_normalized:
            lon = lon * self.lon_scale + self.lon_offset
            lat = lat * self.lat_scale + self.lat_offset

        return lon, lat


    def localization_iterative(self, col, row, alt):
        """ Iterative estimation of the localization function (image to ground), for a list of image points expressed in image coordinates. 逆投影时的迭代函数 Args: col, row: normalized image coordinates (between -1 and 1) alt: normalized altitude (between -1 and 1) of the corresponding 3D point Returns: lon, lat: normalized longitude and latitude Raises: MaxLocalizationIterationsError: if the while loop exceeds the max number of iterations, which is set to 100. """
        # target point: Xf (f for final)
        Xf = np.vstack([col, row]).T

        # use 3 corners of the lon, lat domain and project them into the image
        # to get the first estimation of (lon, lat)
        # EPS is 2 for the first iteration, then 0.1.
        lon = -col ** 0  # vector of ones
        lat = -col ** 0
        EPS = 2
        x0 = apply_rfm(self.col_num, self.col_den, lat, lon, alt)
        y0 = apply_rfm(self.row_num, self.row_den, lat, lon, alt)
        x1 = apply_rfm(self.col_num, self.col_den, lat, lon + EPS, alt)
        y1 = apply_rfm(self.row_num, self.row_den, lat, lon + EPS, alt)
        x2 = apply_rfm(self.col_num, self.col_den, lat + EPS, lon, alt)
        y2 = apply_rfm(self.row_num, self.row_den, lat + EPS, lon, alt)

        n = 0
        while not np.all((x0 - col) ** 2 + (y0 - row) ** 2 < 1e-18):

            if n > 100:
                raise MaxLocalizationIterationsError("Max localization iterations (100) exceeded")

            X0 = np.vstack([x0, y0]).T
            X1 = np.vstack([x1, y1]).T
            X2 = np.vstack([x2, y2]).T
            e1 = X1 - X0
            e2 = X2 - X0
            u  = Xf - X0

            # project u on the base (e1, e2): u = a1*e1 + a2*e2
            # the exact computation is given by:
            # M = np.vstack((e1, e2)).T
            # a = np.dot(np.linalg.inv(M), u)
            # but I don't know how to vectorize this.
            # Assuming that e1 and e2 are orthogonal, a1 is given by
            # <u, e1> / <e1, e1>
            num = np.sum(np.multiply(u, e1), axis=1)
            den = np.sum(np.multiply(e1, e1), axis=1)
            a1 = np.divide(num, den).squeeze()

            num = np.sum(np.multiply(u, e2), axis=1)
            den = np.sum(np.multiply(e2, e2), axis=1)
            a2 = np.divide(num, den).squeeze()

            # use the coefficients a1, a2 to compute an approximation of the
            # point on the gound which in turn will give us the new X0
            lon += a1 * EPS
            lat += a2 * EPS

            # update X0, X1 and X2
            EPS = .1
            x0 = apply_rfm(self.col_num, self.col_den, lat, lon, alt)
            y0 = apply_rfm(self.row_num, self.row_den, lat, lon, alt)
            x1 = apply_rfm(self.col_num, self.col_den, lat, lon + EPS, alt)
            y1 = apply_rfm(self.row_num, self.row_den, lat, lon + EPS, alt)
            x2 = apply_rfm(self.col_num, self.col_den, lat + EPS, lon, alt)
            y2 = apply_rfm(self.row_num, self.row_den, lat + EPS, lon, alt)

            n += 1

        return lon, lat

使用示例

import geo_rpc

rpc = geo_rpc.read_rpc_file('../data/BWDSC_RPC.txt')

#取一个在该rpc范围内的经纬度,并假定一个高程值
lon, lat ,h  = 112.961403969,34.452284651 ,100

#测试正投影
rows ,cols = rpc.projection(lon, lat ,h )
print (" rows and cols : ", rows ,cols )
#测试反投影
rows ,cols = rpc.localization(rows ,cols ,h )
print ( " lon and lat : ", lon, lat)

输出结果:

 rows and cols :  7442.261718114856 19653.793617557167
 lon and lat :  112.961403969 34.452284651

实验结果

精度评估

经过多组对比,该代码的的计算结果与gdal(C++)的rpc模型坐标转换和组内“传承rpc自用库一致。

性能评估

import geo_rpc
from time import *

rpc = geo_rpc.read_rpc_file('../data/BWDSC_RPC.txt')

#取一个在该rpc范围内的经纬度,并假定一个高程值,可以取dem对应值,详见前文博客
lon, lat ,h  = 112.961403969,34.452284651 ,100

begin_time = time()
for i in range(10000):
    #测试正投影
    rows ,cols = rpc.projection(lon, lat ,h )

end_time = time()
run_time = end_time-begin_time
print ('正投影平均耗时:',run_time/10000*1000,'ms')

#测试反投影
begin_time = time()
for i in range(10000):
    rows , 

标签: f37h影像传感器

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台