基于
EKF算法的电池SOC估算
1、SOC选择估算模型
??电池模型是电池状态估计算法研究的基础,需要综合考虑模型的精度、复杂性、实用性等因素。由于电化学模型涉及电池内部反应机制,模型复杂;神经网络模型的应用需要基于大量实验数据进行数据培训;等效电路模型简单,物理意义清晰。综合考虑,等效电路模型更适合本项目的研究。选用一阶RC模型简单,模型精度高,应用广泛。如下图所示。 ??一阶RC模型,由如下几部分组成:1)理想电压源,表示开路电压OCV(随SOC变化);2)欧姆内阻R0,极化内阻R1.3)极化电容C1.反映电池的瞬态响应。U1为R1 C两端的电压,I为通过R0的电流,Ut端电压,一阶RC模型的外部特征描述方程可以写成:
2、SOC估算方法
??以SOC核心内短路状态估计算法包括以下步骤: ??1)离线识别: ??根据容量测试结果进行校准Qst,基于HPPC测试结果标定不同的电池SOC、在不同的温度条件下OCV,R0,R1,C1.获取查表函数[OCV,R0, R1, C1]= f (SOC,T); ??2)在线计算: ?? ?? ??增益系数 ??
3、SOC估算Simulink模型
??用于SOC估算的Simulink模型如下所示。 ??整体模块包括: ??1.数据输入,数据输入时间-Time,电流-Current,电压-Voltage,温度-Temperature,容量-CAP。 ??2、计算时间间隔。 ??3.计算充放电率和电流符号。 ??4、SOC估算模块。 ??5、结果输出,SOC结果,模型端电压,测量端电压。
4、SOC计算模块分析
??具体包括:EKF算法估计SOC,根据查表法获得不同的参数值(HPPC测试结果的校准检查表获得不同的电池SOC、在不同的温度和倍率条件下OCV,R0,R1,C1 ,dVdS)。 ??EKF算法SOC估算:
4.1、SOC状态方程估算
4.2.计算模型端电压
??其中RC两端电压U如下所示:1模型:
4.3、利用Kalman滤波原理生成增益系数Lk
1、状态误差时间更新 2、卡尔曼增益系数Lk计算 3、状态误差测量更新
4.4、SOC后验修正
5、仿真验证
将做好的电池测试数据导入
5.1、不同工况验证
DST工况,FUDS工况
5.2、不同温度验证
25℃,0℃ 从仿真结果可知,不管是相同温度下的不同工况,还是相同工况下的不同温度,EKF算法均具有较高的SOC估算精度! 欢迎关注我的微信公众号,感谢大家的支持!