资讯详情

【论文笔记】Exploring and Distilling Posterior and Prior Knowledge for Radiology Report ......

论文原文:https://arxiv.org/pdf/2106.06963.pdf

参考:https://blog.csdn.net/qq_45645521/article/details/123493075

先验知识:这些柿子是红色的,一定熟了 后验知识:我刚吃了柿子,已经熟透了

Abstract

Posterior-and-Prior Knowledge Exploring-and-Distilling approach (PPKED)

  • first examine the abnormal regions 检查异常部位

  • assign the disease topic tags 疾病主题标签的分配

  • include modules:

    • Posterior Knowledge Explorer (PoKE) 知识探索器
      • explores the posterior knowledge 探索后验知识
      • provides **explicit abnormal visual regions ** 提供显式异常视觉区域
      • alleviate data bias 缓解视觉数据偏差
      • 用疾病词袋探索后验知识,捕捉罕见、多样、重要的异常区域
    • Prior Knowledge Explorer (PrKE) 知识探索器
      • explores the prior knowledge from the prior medical knowledge (prior medical knowledge PrMK G P r G_{Pr} GPr) and prior radiology (prior working experience PrWE W P r W_{Pr} WPr) 探索既往医学知识图(医学知识)和既往放射学报告(工作经验)
      • alleviate data bias 缓解文本数据偏差
      • 探索以前的工作经验和医学知识
    • Multi-domain Knowledge Distiller (MKD) 多领域知识提取器
      • generate the final reports
      • 提取提取的知识并生成报告
      • adaptive distilling attention (ADA)
        • make the model adaptively learn to distill correlate knowledge

Introduction

directly applying image captioning approaches to radiology images has problems:

  • visual data deviation - unbalanced visual distribution
  • textual data deviation - too much normal discriptions

Related Works

Image Captioning

encoder-decoder framework - translates the image to a single descriptive sentence 单描述性句子

radiology report generation - aims to generate a long paragraph - consists of

  • each one focusing on a specific medical observation for a specific region in the radiology image 每个人都关注放射图像中特定区域的特定医学观察

Image Paragraph Generation

  • in a natural image pararaph: each sentence has equal importance
  • in radiology report: generating should be emphasized more than other normalities 需要更重视异常信息

 

Radiology Report Generation

explore and distill the posterior and prior knowledge for accurate radiology report generation 探索和提取后验和先验知识,以便准确地生成放射学报告

  1. for the network structure: of input radiology image by proposing to explicitly extract the abnormal regions 通过提出明确地提取异常区域来探索输入放射学图像的知识
  2. leverage the retrieved reports and medical knowledge graph to model the working experience and medical knowledge 利用检索到的报告和医学知识图对以前的工作经验和以前的医学知识建模
  3. retrieve a large amount of similar reports
  4. treat the retrieved reports as latent guidance 将检索到的报告作为潜在的指引 (use fixed templates to introduce inevitable errors)

 

Posterior-and-Prior Knowledge Exploring-and-Distilling (PPKED)

  • PoKE: explores the knowledge by extracting the explicit abnormal regions 通过提取显式异常区域来探索后验知识
  • PrKE: explores the relevant knowledge for the input image 通过提取显式异常区域来探索后验知识
  • MKD: distills accurate posterior and prior knowledge and adaptively them to generate accurate reports 提取准确的后验和先验知识,并自适应地合并它们以生成准确的报告

 

Backgrounds

Problem Formulation

PoKE : { I , T } → I ′ ; PrKE : { I ′ , W Pr } ;   { I ′ , G Pr } → G Pr ′ MKD : { I ′ , W Pr ′ , G Pr ′ } → R \text{PoKE}:\{I,T\}\to I'; \\ \text{PrKE}:\{I',W_{\text{Pr}}\};\ \{I',G_{\text{Pr}}\}\to G'_{\text{Pr}} \\ \text{MKD}:\{I',W'_{\text{Pr}},G'_{\text{Pr}}\}\to R PoKE:{ I,T}→I′;PrKE:{ I′,WPr​}; { I′,GPr​}→GPr′​MKD:{ I′,WPr′​,GPr′​}→R

 

Information Sources

 

Basic Module

Multi-Head Attention (MHA)

The MHA consists of n parallel heads and each head is defined as a scaled dot-product attention: Att i ( X , Y ) = softmax ( X W i Q ( Y W i K ) T d n ) Y W i V MHA ( X , Y ) = [ Att 1 ( X , Y ) ; . . . ; Att n ( X , Y ) ] W O \text{Att}_i(X,Y)=\text{softmax}(\frac{X\text{W}_i^\text{Q}(Y\text{W}_i^\text{K})^T}{\sqrt{d_n}})Y\text{W}_i^\text{V} \\ \text{MHA}(X,Y)=[\text{Att}_1(X,Y);...;\text{Att}_n(X,Y)]\text{W}^{\text{O}} Atti​(X,Y)=softmax(dn​ ​XWiQ​(YWiK​)T​)YWiV​ 标签: 电容rlx能代替rls连接器poke

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台