先记下来:
1、不使用初始化语句;
2、不使用延迟语句;
3、不使用循环次数不确定的句子,如:forever,while等;
4、尽量同步设计电路;
5、尽量采用行为语句完成设计;
6、always过程块描述组合逻辑,应在敏感信号表中列出所有的输入信号;
7、所有内部寄存器都应该复位;
8、用户自定义原件(UDP元件)不能综合。
一:基本Verilog变量有线网类型和寄存器类型。线网变量综合成wire,寄存器可以综合成WIRE,锁定器和触发器也可以优化。二:verilog从句子结构到门级的映射1、连续赋值:assign连续赋值语句的逻辑结构是将等式右侧驱动左侧的结点。因此,连续赋值的目标结点总是由组合逻辑驱动。Assign语句中的延时综合时都将忽视。2、过程赋值:只出现过程赋值always语句中。阻塞赋值和非阻塞赋值本身没有区别,但对后面的句子有不同的影响。建议设计组合逻辑电路时使用阻塞赋值,设计时序电路时使用非阻塞赋值。过程赋值的赋值对象可以综合成wire, latch,和flip-flop,这取决于具体情况。例如,时钟控制下的非阻塞赋值综合成flip-flop。综合时会忽略过程赋值句中的任何延迟。建议同一变量单独使用阻塞或非阻塞赋值。3、逻辑操作符:硬件中现有的逻辑门对应逻辑操作符,部分操作符不能综合:===、!==。4、算术操作符:Verilog中将reg视为无符号数,而integer视为符号数。因此,在有符号操作时使用
A
A) verilog的流行,有两方面的原因:1它是cadence的模拟器verilog-XL的基础,cadence的广泛流行使得verilog在90年代深入人心;2它在硅谷获得广泛使用;B) verilog与VHDL相比的优点二者的关系仿佛C与FORTRAN,具体而言:1 verilog的代码效率更高: 比较明显的对比:VHDL在描述一个实体时采用entity/architecture模式,verilog在描述一个实体时只需用一个"module/edumodule"语句块.此外verilog的高效性还在很多地方体现出来;2 verilog支持二进制的加减运算:VHDL在进行二进制的加减运算时使用conv_***函数或者进行其他的定义,总之必须通知编译器;verilog直接用形如"c=a+b"的表示二进制的加减运算;3综合时可控制性好:VHDL对信号不加区分地定义为"signal",而verilog区分为register类型的和wire类型的;但是也有人支持VHDL,认为verilog和VHDL的关系仿佛C和C++.C)典型的verilog模块讨论以下典型电路的verilog描述:*与非门;*加法器; //即全加器* D触发器;*计数器; //**分频的counter* latch;*时序机;*RAM; //用synopsys的*模块引用;*预编译;*与非门的verilog描述如下://verilog使用和C语言相同的注释方法module nd02(a1,a2,zn);//一个verilog模块总是以module开始,以endmodule 结束,nd02是模块名,a1,a2,zn是模块的3个输入输出信号input a1,a2; //告诉编译器a1,a2对此模块而言是输入,并且数据类型是"bit"output zn; //告诉编译器zn对此模块而言是输出,数据类型也是"bit"nand (zn,a1,a2); //我理解nand是运算符,我们不必深究verilog中的正式术语是什么了吧,总之这种形式表示zn=~(a1 && a2);你一定已经想到类似的运算符还有"not","and","or","nor","xor"了吧;除了"not",括号里的信号数可以任意,例如or (z,f,g,h)表示z=f || g || h,并且延时是3个单位时间,#x表示延时x个单位时间;endmodule
*加法器的verilog描述如下:module ad03d1(A,B,CI,S,CO) ;input [2:0] A,B; //表示A,B是输入信号,并且是3位矢量,上界是2,下界是0input CI;output [2:0] S;output CO;assign {CO,S}=A+B+CI;//一对"{"和"}"表示链接,即将CO和S合并成4位矢量endmodule
*带异步清零端的D触发器的verilog描述如下:module dfctnb (d,cp,cdn,q,qn);input d,cp,cdn;output q,qn;
reg q,qn; //关键字"reg"表示q和qn是"register"类型的信号;verilog中有两种类型的信号:"register"类型和"wire"类型.你可以简单地把register类型的信号想象为某个D触发器的输出,而wire类型的的信号是组合逻辑的输出.二者的最大区别在于:你可以对register类型的信号进行定时赋值(用wait语句在特定时刻的赋值,详见下面always语句),而对于wire类型的信号则不可.always wait (cdn==0) //表示每当cdn=0时,将要对D触发器清零,"always"和"wait"嵌套,"wait"和"@"是verilog的两个关键字,表示一旦有某事发生;则执行下面的语句块,"always"有点象C语言中的"if ... then...","wait"和"@"的区别:请参考本模块.wait表示本语句块的进程停止,直到"cdn=0"的条件出现才继续;我理解在verilog中,每个最外层语句块都是一个***的进程;"@"(请看下个always语句)也表示本语句块的进程停止,直到后面定义"posedge cp"(即出现cp的上升沿)的事件出现才继续;也许wait和@可以合二为一吧,但至少到目前verilog中wait表示"条件",@表示"事件";具体运用中,wait总是用于类似"wait(xxx=1)"之类的场合,@总是用于类似"@(xxx)"或"@(posedge/negedge xxx)"之类的场合整句话的意思是"每当cdn等于0时,则作以下事情"begin //begin...end结构的用法类似于pascal语言 q=0; qn=1; wait (cdn==1);endalways @ (posedge cp)//"@(posedge cp)"中有两个关键字:"@ (x)"表示"每当事件x发生","posedge x"表示"x的上升沿,"negedge x"表示"x的下降沿",整句话的意思是"每当cp的上升沿,则作以下事情" if (cdn) //如果cdn=1(意味着清零端无效) begin q=d; qn=~q;//"~"表示反相 endendmodule
*计数器的verilog描述如下:module count(in,set,cp,out) ;//此计数器,在cp的上升沿将输入赋给输出,在cp的上升沿使输出加一input [15:0] in;input set,cp;output [15:0] out;reg [15:0] out;always @ (posedge set) out = in;always @(posedge cp) out = out+1; //verilog容许一个信号同时出现在等号两端,只要它是reg类型的endmodule
*latch的描述如下:always @(clk or d) if (clk) q = d;
*时序机的verilog描述如下:always @(posedge CLK) //D是下一个状态,Q是当前状态,e1,e2是输入,a,b是输出Q=D;always @(Q or othercase) begin //当Q变化或输入e1,e2变化时D要相应变化D = Q; //note1a = 0;b = 0;......case(Q) q1:begin q1 action; if(e1)D=d1; if(e2)D=d2; else D=d3; a = 1; //note 2 end q2:begin b = 1; ...... end default:begin a = 0; b = 0; ......endend---annotations---note 1: This is a custom expression,after reset,D should be equal to Q;note 2: In this state machine,a is only equal to 1 at state q1,in other state,a is equal to 0;* RAM的verilog描述如下:module ram(din,ain,dout,aout,rd,wr);//这是一个双口RAM,分别有:输入端:输入地址ain;输入数据din;上升沿有效的写信号wr;/输出端:输出地址aout;输出数据dout;高电平有效的读信号rd; inout [7:0] din; input [7:0] ain,aout; input rd,wr; output [7:0] dout; reg [7:0] memory [0:255]; //请注意这是存储阵列的描述方法,描述了一个共有256个字的存储阵列,每个字是8位 assign dout = rd ? memory[aout] : 8'bz; //"assign"关键字表示并行赋值语句的开始"?"运算符的作用和在C语言中一样"8'bz"是一个常量,表示一个字节的高阻态,其中8表示长度是8bit,"'"是固定分割符,"b"表示后面的数据是以比特形式给出的,"z"表示高阻;举例:4'ha表示长4bit的数"1010"。类似的还可举出5'b10111,6'o33等等 always @(posedge wr)memory[ain] = din;endmodule*模块引用假设在前面(可以是别的模块)定义了module ram(din,ain,dout,aout,rd,wr),则引用此模块时只需写ram myram(din_in_map,ain_in_map,dout_in_map,aout_in_map,rd_in_map,wr_in_map);//其中"ram"是所引用的module名,"myram"是你起的instance名,"din_in_map"等等是图中的节点名,和器件(module)中的"din..."进行"虚实结合";
*预编译类似C语言,只需写`include "<pathname:filename>",反上撇号"`"是verilog的预编译符,类似C中的"#".
D) verilog语法要点*基本原则设计时应该把你的系统划分为计数器,触发器,时序机,组合逻辑等等可综合的单元,对此不同的IC公司和
- 强烈建议用同步设计2.在设计时总是记住时序问题3.在一个设计开始就要考虑到地电平或高电平复位、同步或异步复位、上升沿或下降沿触发等问题,在所有模块中都要遵守它4.在不同的情况下用if和case,最好少用if的多层嵌套(1层或2层比较合适,当在3层以上时,最好修改写法,因为这样不仅可以reduce area,而且可以获得好的timing)5.在锁存一个信号或总线时要小心,对于整个design,尽量避免使用latch,因为在DFT时很难test。6.确信所有的信号被复位,在DFT时,所有的FlipFlop都是controllable,7.永远不要再写入之前读取任何内部存储器(如SRAM)8.从一个时钟到另一个不同的时钟传输数据时用数据缓冲,他工作像一个双时钟FIFO(是异步的),可以用Async SRAM搭建Async FIFO。9.在
中二维数组可以使用,它是非常有用的。在VERILOG中他仅仅可以使用在测试模块中,不能被综合10.遵守register-in register-out规则11.像synopsys的DC的综合工具是非常稳定的,任何bugs都不会从综合工具中产生12.确保VHDL 版本与FPGA 的版本尽可能的相似,特别是SRAM类型,若版本一致是最理想的,但是在工作中FPGA版本一般用FPGA自带的SRAM,ASIC版本一般用厂商提供的SRAM。13.在嵌入式存储器中使用BIST14.虚单元和一些修正电路是必需的15.一些简单的测试电路也是需要的,经常在一个芯片中有许多测试模块16.除非低功耗不要用门控时钟,强烈建议不要在design中使用gate clock17.不要依靠脚本来保证设计。但是在脚本中的一些好的约束能够起到更好的性能(例如前向加法器)18.如果时间充裕,通过时钟做一个多锁存器来取代用MUX19.不要用内部tri-state, ASIC需要总线保持器来处理内部tri-state,如IO cell。20.在top level中作pad insertion21.选择pad时要小心(如上拉能力,施密特触发器,5伏耐压等),选择合适的IO cell22.小心由时钟偏差引起的问题23.不要试着产生半周期信号24.如果有很多函数要修正,请一个一个地作,修正一个函数检查一个函数25.在一个计算等式中排列每个信号的位数是一个好习惯,即使综合工具能做26.不要使用ASIC 提供的除法器27.削减不必要的时钟。它会在设计和布局中引起很多麻烦,大多数FPGA有1-4个专门的时钟通道HDL
良好代码编写风格可以满足信、达、雅的要求。在满足功能和性能目标的前提下,增强代码的可读性、可移植性,首要的工作是在项目开发之前为整个设计团队建立一个命名约定和缩略语清单,以文档的形式记录下来,并要求每位设计人员在代码编写过程中都要严格遵守。良好代码编写风格的通则概括如下: (1) 对所有的信号名、变量名和端口名都用小写,这样做是为了和业界的习惯保持一致;对常量名和用户定义的类型用大写; (2) 使用有意义的信号名、端口名、函数名和参数名; (3) 信号名长度不要太长; (4) 对于时钟信号使用clk 作为信号名,如果设计中存在多个时钟,使用clk 作为时钟信号的前缀; (5) 对来自同一驱动源的信号在不同的子模块中采用相同的名字,这要求在芯片总体设计时就定义好顶层子模块间连线的名字,端口和连接端口的信号尽可能采用相同的名字; (6) 对于低电平有效的信号,应该以一个下划线跟一个小写字母b 或n 表示。注意在同一个设计中要使用同一个小写字母表示低电平有效; (7) 对于复位信号使用rst 作为信号名,如果复位信号是低电平有效,建议使用rst_n; (8) 当描述多比特总线时,使用一致的定义顺序,对于
规则 #1: 建立时序逻辑模型时,采用非阻塞赋值语句。规则 #2: 建立latch模型时,采用非阻塞赋值语句。EDA中国门户网站1X!y4m]0r O B规则 #3: 在always块中建立组合逻辑模型时,采用阻塞赋值语句。规则 #4: 在一个always块中同时有组合和时序逻辑时时,采用非阻塞赋值语句。规则 #5: 不要在一个always块中同时采用阻塞和非阻塞赋值语句。规则 #6: 同一个变量不要在多个always块中赋值。EDA中国门户网站8q%UOC%yX b:Ma规则 #7: 调用$strobe系统函数显示用非阻塞赋值语句赋的值。规则 #8: 不要使用#0延时赋值。
组合逻辑1,敏感变量的描述完备性