RSKT-2014 International conference on rough sets and knowledge technology
文章目录
- 1 Background and Motivation
- 2 Review of Convolutional Neural Networks
- 3 Advantages / Contributions
- 4 Method
- 5 Experiments
-
- 5.1 Datasets
- 5.2 Experimental Results
- 6 Conclusion(own) / Future work
1 Background and Motivation
池化层的作用(一文看深度学习中9种池化方法!
- 增加网络感受野
- 抑制噪声,减少信息冗余
- 降低模型计算量,降低网络优化难度,防止网络过拟合
- 改变模型在输入图像中的特征位置
作者针对 max 和 ave pooling 的缺点,
提出了 mix pooling——randomly employs the local max pooling and average pooling methods when training CNNs
2 Review of Convolutional Neural Networks
- Convolutional Layer,包括卷积操作和 activation function
- Non-linear Transformation Layer,也即 normalization 层,现在比较流行的是 BN 等,以前的是 LCN(local contrast normalization) 和 AlexNet 的 LRN(the local response normalization) 等,PS:论文中 LCN 公式感觉有问题,LRN 原著论文的细节也有差距,形式基本一致
- Feature Pooling Layer
3 Advantages / Contributions
借鉴 dropout, 混合max 和 ave 池化,提出 mixed pooling
4 Method
λ \lambda λ is a random value being either 0 or 1
先看看 max 和 ave pooling 的反向传播
max pooling (图片来自网络,侵删!
ave pooling (图片来自网络,侵删!
mixed pooling
得记录下 λ \lambda λ 只有这样,才能正确反向传播
the pooling history about the random value λ \lambda λ in Eq. must be recorded during forward propagation.
统计训练时某次 pooling 采用 max 和 ave 的频次 F m a x k F_{max}^{k} Fmaxk 和 F a v e k F_{ave}^{k} F
5 Experiments
5.1 Datasets
- CIFAR-10
- CIFAR-100
- SVHN
5.2 Experimental Results
train error 高,acc 高
作者解释 This indicates that the proposed mixed pooling outperforms max pooling and average pooling to address the over-fitting problem
可视化结果 可以看出 mixed pooling 包含更多的信息
6 Conclusion(own) / Future work
LRN
k , n , α , β k, n, \alpha, \beta k,n,α,β 都是超参数, a , b a,b a,b 输入输出特征图, x , y x,y x,y 空间位置, i i i 通道位置
以下内容来自 深度学习的局部响应归一化LRN(Local Response Normalization)理解
import tensorflow as tf
import numpy as np
x = np.array([i for i in range(1,33)]).reshape([2,2,2,4])
y = tf.nn.lrn(input=x,depth_radius=2,bias=0,alpha=1,beta=1)
with tf.Session() as sess:
print(x)
print('#############')
print(y.eval())
LCN 《What is the best multi-stage architecture for object recognition?》