资讯详情

TI mmWave radar sensors Tutorial 笔记 | Module 2: The phase of the IF signal

本系列为TI(Texas Instruments) mmWave radar sensors 视频公开课系列 学习笔记。

  • 视频网址: https://training.ti.com/intro-mmwave-sensing-fmcw-radars-module-1-range-estimation?context=1128486-1139153-1128542

  • 下面的微信官方账号回复 ”,即可获取


内容在CSDN与微信微信官方账号同步更新

  • CSDN博客
  • 微信公众号

在这里插入图片描述

  • Markdown源文件尚未开源
  • 笔记难免会出现问题,欢迎联系指正

FMCW Radars – Module 1 : Range Estimation FMCW Radars – Module 2 : The Phase of the IF Signal FMCW Radars – Module 3 : Velocity Estimation FMCW Radars – Module 4 : Some System Design Topics FMCW Radars – Module 5 : Angle Estimation


Module 2: The Phase of the IF Signal

Last Module: the frequency of IF signal
  • f I F = S 2 d / c f_{IF} = S2d/c fIF=S2d/c

This Module:

  • look into the of the IF signal
  • The if we wish to understand the capability of FMCW radar to:
  1. respond to very displacements 位移 in objects

  2. very quickly and accurately

  • 是heartbeat monitoring and vibration detection的基础

Fourier Transforms: A quick review

  • Fourier Transform converts a time domain signal into the frequency domain
  • A sinusoid in the time domain produces a in the frequency domain
  • The signal in the Frequency domian is
    • each value is a with a amplitude and a phase: A e j θ Ae^{j\theta} Aejθ
    • 可用图形表示(如下图)

  • is equal to the of the sinusoid

Note: The above is strictly true only for a complex input tone (in the form of e j ω t e^{j\omega t} ejωt)

  • 但对于real input概念上也equally applicable with a few mathematical modifications
  • 此处为了从概念上进行理解,忽略这些修正

Frequency of the IF signal: Recap from module 1

  • 两种观察方式:
    • A-t plot
    • f-t plot
  • In module 1, focus on f-t plot to understand the IF signal
    • A single object in front of the radar produces an IF signal with a constant frequency of S 2 d / c S2d/c S2d/c

  • This module:
    • use the to analyze the relationship between the and the

Phase of the IF signal

  • Let’s look at the ‘A-t’ plot

    • To get more intuition into the nature of the IF signal
  • IF signal:

    • For an object at a distance d from the radar, the IF signal will be a sinusoid:

    • 其中 f = S 2 d / c f = S2d/c f=S2d/c

    • What is the :

      🚩 The phase of point C in the following image

      🚩 Recall: mixer输出信号的initial phase就是 the difference of the initial phase of the two inputs

      🚩 也是 the peak point in FFT(IF signal) 的相位

  • :what happens to the phase fo the IF signal if the object moves by a small ditance Δ τ \Delta \tau Δτ?

    • 灰色曲线: before the movement

    • 蓝色曲线: after the movement

    • The phase of the TX: delay

      🚩 Phase diference between A and D:

    • The phase of the RX: 不变 (注: 因为根据电磁场与波,垂直入射相位改变 π \pi π, 所以不变)

    • Therefore,

    • 最终结论: 4 π Δ d λ \frac{4\pi \Delta d}{\lambda} λ4πΔd​

Sensitivity of the IF signal for small displacements in the object

  • Recall: the IF signal is A s i n ( 2 π f t + ϕ 0 ) Asin(2\pi ft + \phi_0) Asin(2πft+ϕ0​)

    • f = S 2 d / c f = S2d/c f=S2d/c
    • Δ ϕ = 4 π Δ d λ \Delta \phi = \frac{4\pi \Delta d}{\lambda} Δϕ=λ4πΔd​
  • Now:

    • 一小段(small): compared to the range resolution of the radar

  • An example:
    • S = 50 M H z / u s S = 50MHz/us S=50MHz/us, T c = 40 u s T_c = 40us Tc​=40us, 77 G H z 77GHz 77GHz, 1 m m = λ / 4 1mm = \lambda/4 1mm=λ/4

    • What happens if an object in front of the randar changes its position by 1 m m 1mm 1mm

    • Phase: Δ ϕ = 4 π Δ d λ = π = 18 0 ∘ \Delta \phi=\frac{4 \pi \Delta d}{\lambda}=\pi=180^{\circ} Δϕ=λ4πΔd​=π=180∘

    • Frequency: by Δ f = S 2 Δ d c = 50 × 1 0 12 × 2 × 1 × 1 0 − 3 3 × 1 0 8 = 333   H z \Delta \mathrm{f}=\frac{\mathrm{S} 2 \Delta d}{c}=\frac{50 \times 10^{12} \times 2 \times 1 \times 10^{-3}}{3 \times 10^{8}}=333 \mathrm{~Hz} Δf=cS2Δd​=3×10850×1012×2×1×10−3​=333 Hz

      🚩 但 尽管 333 Hz looks like a big number But in the , this corresponds to only additional Δ f T c = 333 × 40 × 1 0 − 6 = 0.013 \Delta f T_c = 333 \times 40 \times 10^{-6} = 0.013 ΔfTc​=333×40×10−6=0.013 cycles


: The of the IF signal is very sensitive to small changes in object range.

  • 下图所示
    • An object at certain distance produces an IF signal with a certain frequency and phase (上图)
    • small motion in the object

How to measure the velocity (v) of an object using 2 chirps?

  • Transmit two chirps separated by T c T_c Tc​
  • The range-FFTs corresponding to each chirp will have peaks in the same location but with
  • The measured phase difference ω \omega ω corresponds to a motion in the object of v T c vT_c vTc​
    • ω = 4 π v T c λ \omega = \frac{4\pi v T_c}{\lambda} ω=λ4πvTc​​

: The can be used to

Measurements on a Vibrating Object

  • blue block:
    • Small (amplitude ~1mm) vibrations over time
    • Δ d \Delta d Δd is a fraction of a wavelength

  • measure the time evolution of phase
    • obtained by FFT
    • can be used to estimate both the

Epilogue

  • What we learned in this module:

    • The phase of IF signal is very sensitve to small changes in the range of the object
    • we can exploit it to meaure the velocity
    • equidistant from the radar, but with differing velocities relative to the radar

      🚩 Equi-range objects which have differing velocities relative to the radar can be separated out using a “Doppler-FFT”

      ✅ see in the next module

标签: ftc334c电容式触摸ic

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台