import numpy # scipy.special for the sigmoid function expit() import scipy.special # library for plotting arrays import matplotlib.pyplot # ensure the plots are inside this notebook, not an external window %matplotlib inline # neural network class definition class neuralNetwork: # initialise the neural network def __init__(self, inputnodes, hiddennodes, outputnodes, learningrate): # set number of nodes in each input, hidden, output layer self.inodes = inputnodes self.hnodes = hiddennodes self.onodes = outputnodes # link weight matrices, wih and who # weights inside the arrays are w_i_j, where link is from node i to node j in the next layer # w11 w21 # w12 w22 etc self.wih = numpy.random.normal(0.0, pow(self.inodes, -0.5), (self.hnodes, self.inodes)) self.who = numpy.random.normal(0.0, pow(self.hnodes, -0.5), (self.onodes, self.hnodes)) # learning rate self.lr = learningrate # activation function is the sigmoid function self.activation_function = lambda x: scipy.special.expit(x) pass # train the neural network def train(self, inputs_list, targets_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T targets = numpy.array(targets_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) # output layer error is the (target - actual) output_errors = targets - final_outputs # hidden layer error is the output_errors, split by weights, recombined at hidden nodes hidden_errors = numpy.dot(self.who.T, output_errors) # update the weights for the links between the hidden and output layers self.who = self.lr * numpy.dot((output_errors * final_outputs * (1.0 - final_outputs)), numpy.transpose(hidden_outputs)) # update the weights for the links between the input and hidden layers self.wih = self.lr * numpy.dot((hidden_errors * hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs)) pass # query the neural network def query(self, inputs_list): # convert inputs list to 2d array inputs = numpy.array(inputs_list, ndmin=2).T # calculate signals into hidden layer hidden_inputs = numpy.dot(self.wih, inputs) # calculate the signals emerging from hidden layer hidden_outputs = self.activation_function(hidden_inputs) # calculate signals into final output layer final_inputs = numpy.dot(self.who, hidden_outputs) # calculate the signals emerging from final output layer final_outputs = self.activation_function(final_inputs) return final_outputs # number of input, hidden and output nodes input_nodes = 784 hidden_nodes =200 output_nodes = 10 # learning rate learning_rate = 0.05 # create instance of neural network n = neuralNetwork(input_nodes,hidden_nodes,output_nodes,learning_rate)
# load the mnist training data CSV file into a list
training_data_file = open("C:/Users/001/Downloads/mnist_train.csv", 'r')
training_data_list = training_data_file.readlines()
training_data_file.close()
# train the neural network
# epochs is the number of times the training data set is used for training
epochs = 14
for e in range(epochs):
# go through all records in the training data set
for record in training_data_list:
# split the record by the ',' commas
all_values = record.split(',')
# scale and shift the inputs
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# create the target output values (all 0.01, except the desired label which is 0.99)
targets = numpy.zeros(output_nodes) + 0.01
# all_values[0] is the target label for this record
targets[int(all_values[0])] = 0.99
n.train(inputs, targets)
pass
pass
# load the mnist test data CSV file into a list
test_data_file = open("C:/Users/001/Downloads/mnist_test.csv", 'r')
test_data_list = test_data_file.readlines()
test_data_file.close()
# test the neural network
# scorecard for how well the network performs, initially empty
scorecard = []
# go through all the records in the test data set
for record in test_data_list:
# split the record by the ',' commas
all_values = record.split(',')
# correct answer is first value
correct_label = int(all_values[0])
# scale and shift the inputs
inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01
# query the network
outputs = n.query(inputs)
# the index of the highest value corresponds to the label
label = numpy.argmax(outputs)
# append correct or incorrect to list
if (label == correct_label):
# network's answer matches correct answer, add 1 to scorecard
scorecard.append(1)
else:
# network's answer doesn't match correct answer, add 0 to scorecard
scorecard.append(0)
pass
pass
# calculate the pe/rformance score, the fraction of correct answers
scorecard_array = numpy.asarray(scorecard)
print ("performance = ", scorecard_array.sum() / scorecard_array.size)
#result:
#input_nodes = 784
#hidden_nodes =200
#output_nodes = 10
#learning_rate = 0.1
#epochs = 5
#performance = 0.9734
#input_nodes = 784
#hidden_nodes =200
#output_nodes = 10
#learning_rate = 0.05
#epochs = 14
#performance = 0.9773
原文链接:
https://github.com/makeyourownneuralnetwork/makeyourownneuralnetwork/
安装:
在阿纳康达|蟒蛇分布 (anaconda.com) 下载Graphical Installer (594 MB) 默认安装;
安装完成后使用Jupyter Notebook的New->Notebook编辑代码;
数据集(it's free):
datas for “python notebook for Make Your Own Neural Network”.zip - 蓝奏云
or
数据集for“pythonnotebookforMakeYourOwnNeuralNetwork”-机器学习文档类资源-CSDN下载
注意: numpy.array详解Numpy.array()详解 - 百度文库 数组转置:numpy.array(inputs_list, ndmin=2).T(.T即转置)
GoodLucky