双目摄像头校准完成后,校准矩阵包括左右相机的内参数矩阵、畸变矩阵、旋转矩阵和平移矩阵。将其放入代码中,如下所示:
import cv2 import numpy as np # 左相机内参 left_camera_matrix = np.array([(426.61499943, 0, 337.77666426), (0, 426.50296492, 254.57967858), (0, 0, 1)]) # 左相机畸变系数:[k1, k2, p1, p2, k3] left_distortion = np.array([[1.64160258e-02 ,1.90313751e-02 ,3.85843636e-05 ,-6.81027605e-04, -7.77682876e-02]]) # 右相机内参 right_camera_matrix = np.array([( 428.37039364, 0, 335.14944239), (0, 428.26149388, 253.70369704), (0, 0, 1)]) # 右相机畸变系数:[k1, k2, p1, p2, k3] right_distortion = np.array([[1.18624707e-02 , 2.92395356e-02 , 7.84349618e-04 ,-4.59924352e-05, -8.34482148e-02]]) # om = np.array([-0.00009, 0.02300, -0.00372]) # R = cv2.Rodrigues(om)[0] # 旋转矩阵 R = np.array([(9.99999401e-01 ,-1.08818183e-03 , 1.21838861e-04), (1.08825693e-03 , 9.99999217e-01, -6.18081935e-04), (-1.21166180e-04 , 6.18214157e-04 , 9.99999802e-01)]) # 平移向量 T = np.array([[-59.98598553], [-0.81926245], [0.12784464]]) doffs = 0.0 size = (640, 480) R1, R2, P1, P2, Q, validPixROI1, validPixROI2 = cv2.stereoRectify(left_camera_matrix, left_distortion, right_camera_matrix, right_distortion, size, R, T) left_map1, left_map2 = cv2.initUndistortRectifyMap(left_camera_matrix, left_distortion, R1, P1, size, cv2.CV_16SC2) right_map1, right_map2 = cv2.initUndistortRectifyMap(right_camera_matrix, right_distortion, R2, P2, size, cv2.CV_16SC2)
立体校准和平行校正。代码如下:
img1_rectified = cv2.remap(frame1, left_map1, left_map2, cv2.INTER_LINEAR, cv2.BORDER_CONSTANT) img2_rectified = cv2.remap(frame2, right_map1, right_map2, cv2.INTER_LINEAR, cv2.BORDER_CONSTANT)
也可以不用,如果你的相机的平行相机的话,这一步做不做都可以。
完成之后在看一下BM算法:
# BM numberOfDisparities = ((640 // 8) 15) & -16 # 640对应于分辨率的宽度 stereo = cv2.StereoBM_create(numDisparities=16*10, blockSize=7) # 立体匹配 stereo.setROI1(camera_configs.validPixROI1) stereo.setROI2(camera_configs.validPixROI2) stereo.setPreFilterCap(50) stereo.setBlockSize(9) stereo.setMinDisparity(0) stereo.setNumDisparities(numberOfDisparities) stereo.setTextureThreshold(10) stereo.setUniquenessRatio(15) stereo.setSpeckleWindowSize(200) stereo.setSpeckleRange(32) stereo.setDisp12MaxDiff(8) disparity = stereo.compute(img1_rectified, img2_rectified) # 计算视差 disp = cv2.normalize(disparity, disparity, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U) # 归一化函数算法 threeD = cv2.reprojectImageTo3D(disparity, camera_configs.Q, handleMissingValues=True) # 计算三维坐标数据值 threeD = threeD * 16
这是三维坐标的计算,其中stereo都是算法参数,可以调整,找到效果好的参数组合。当然建议设置滑块调整,方便调整。我将在另一个博客中介绍如何设置滑块进行参数调整。
cv2.setMouseCallback(WIN_NAME, onmouse_pick_points, threeD) cv2.imshow("left", frame1) cv2.imshow(WIN_NAME, disp) # 双目画面显示深度图
这样,就可以在左相机的坐标系下进行计算和显示。
点击鼠标输入像素坐标信息BM算法匹配相应点,然后根据平行视图的计算公式计算,即可获得三维坐标,因此真实坐标需要乘以16进行转换。
鼠标点击输入函数如下xy您还可以设置自己的输入来计算相应的坐标:
def onmouse_pick_points(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: threeD = param print('\n像素坐标 x = %d, y = %d' % (x, y)) print("世界坐标xyz 是:", threeD[y][x][0] / 1000.0, threeD[y][x][1] / 1000.0, threeD[y][x][2] / 1000.0, "m") distance = math.sqrt(threeD[y][x][0] ** 2 threeD[y][x][1] ** 2 threeD[y][x][2] ** 2) distance = distance / 1000.0 # mm -> m print("距离是:", distance, "m")
cv2.setMouseCallback(WIN_NAME, onmouse_pick_points, threeD)
整个函数可以通过组合这些函数获得。可以输入图像识别深度和摄像头实时识别。计算速度快。如果实际测量,感觉精度还可以,当然是短距离。如果没有效果SGBM算法好,但计算速度快。
完整的代码如下,最重要的是。
# -*- coding: utf-8 -*- import numpy as np import cv2 import camera_configs import random import math cap = cv2.VideoCapture(0) cap.set(3, 1280) cap.set(4, 480) # 打开并设置摄像头 # 鼠标回调函数 def onmouse_pick_points(event, x, y, flags, param): if event == cv2.EVENT_LBUTTONDOWN: threeD = param print('\n像素坐标 x = %d, y = %d' % (x, y)) # print("世界坐标是:", threeD[y][x][0], threeD[y][x][1], threeD[y][x][2], "mm") print("世界坐标xyz 是:", threeD[y][x][0] / 1000.0, threeD[y][x][1] / 1000.0, threeD[y][x][2] / 1000.0, "m") distance = math.sqrt(threeD[y][x][0] ** 2 threeD[y][x][1] ** 2 threeD[y][x][2] ** 2) distance = distance / 1000.0 # mm -> m print("距离是:", distance, "m") WIN_NAME = 'Deep disp' cv2.amedWindow(WIN_NAME, cv2.WINDOW_AUTOSIZE)
while True:
ret, frame = cap.read()
frame1 = frame[0:480, 0:640]
frame2 = frame[0:480, 640:1280] # 割开双目图像
imgL = cv2.cvtColor(frame1, cv2.COLOR_BGR2GRAY) # 将BGR格式转换成灰度图片
imgR = cv2.cvtColor(frame2, cv2.COLOR_BGR2GRAY)
# cv2.remap 重映射,就是把一幅图像中某位置的像素放置到另一个图片指定位置的过程。
# 依据MATLAB测量数据重建无畸变图片
img1_rectified = cv2.remap(imgL, camera_configs.left_map1, camera_configs.left_map2, cv2.INTER_LINEAR)
img2_rectified = cv2.remap(imgR, camera_configs.right_map1, camera_configs.right_map2, cv2.INTER_LINEAR)
imageL = cv2.cvtColor(img1_rectified, cv2.COLOR_GRAY2BGR)
imageR = cv2.cvtColor(img2_rectified, cv2.COLOR_GRAY2BGR)
# BM
numberOfDisparities = ((640 // 8) + 15) & -16 # 640对应是分辨率的宽
stereo = cv2.StereoBM_create(numDisparities=16*10, blockSize=7) # 立体匹配
stereo.setROI1(camera_configs.validPixROI1)
stereo.setROI2(camera_configs.validPixROI2)
stereo.setPreFilterCap(50)
stereo.setBlockSize(9)
stereo.setMinDisparity(0)
stereo.setNumDisparities(numberOfDisparities)
stereo.setTextureThreshold(10)
stereo.setUniquenessRatio(15)
stereo.setSpeckleWindowSize(200)
stereo.setSpeckleRange(32)
stereo.setDisp12MaxDiff(8)
disparity = stereo.compute(img1_rectified, img2_rectified) # 计算视差
disp = cv2.normalize(disparity, disparity, alpha=0, beta=255, norm_type=cv2.NORM_MINMAX, dtype=cv2.CV_8U) # 归一化函数算法
threeD = cv2.reprojectImageTo3D(disparity, camera_configs.Q, handleMissingValues=True) # 计算三维坐标数据值
threeD = threeD * 16
# threeD[y][x] x:0~640; y:0~480; !!!!!!!!!!
cv2.setMouseCallback(WIN_NAME, onmouse_pick_points, threeD)
cv2.imshow("left", frame1)
cv2.imshow(WIN_NAME, disp) # 显示深度图的双目画面
key = cv2.waitKey(1)
if key == ord("q"):
break
cap.release()
cv2.destroyAllWindows()