1:AWGNChannelNoise Level
2:Relationship Between EsN0 and EbN0
3:Relationship Between EsN0 and SNR
4:仿真
5:计算结果
Typical quantities used to describe the relative power of noise in anAWGNchannelinclude
-
Signal-to-noise ratio (SNR) per sample. SNR is the actual input parameter to the
awgn
function. -
Ratio of bit energy to noise power spectral density (EbN0). This quantity is used by
BER Analyzer
Tool and performance evaluation functions in this toolbox. -
Ratio of symbol energy to noise power spectral density (EsN0)
简单的解释是:
SNR表示每隔一次采样点的信号噪声比
EbN0表示每隔比特能量与噪声功率谱密度的比值
EsN0表示每个符号能量与噪声功率谱密度之比
2:Relationship Between EsN0 and EbN0
The relationship between EsN0 and EbN0, both expressed in dB, is as follows:
Es/N0(dB)=Eb/N0(dB) 10log10(k)
where k is the number of information bits per symbol.
In a communications system,kmight be influenced by the size of the modulation alphabet or the code rate of an error-control code. For example, in a system using a rate-1/2 code and 8-PSK modulation, the number of information bits per symbol (k) is the product of the code rate and the number of coded bits per modulated symbol. Specifically, (1/2) log2(8) = 3/2. In such a system, three information bits correspond to six coded bits, which in turn correspond to two 8-PSK symbols.
简单的解释是:
EsN0与EbN0的关系式
Es/N0(dB)=Eb/N0(dB) 10log10(k)
假设与信道编码无关bpsk,则k为log2^2=1,假设为qpsk,则k为log2^4=4;
3:Relationship Between EsN0 and SNR
The relationship between EsN0 and SNR, both expressed in dB, is as follows:
Es/N0(dB)=10log10(Tsym/Tsamp) SNR(dB)forcomplexinputsignalsEs/N0(dB)=10log10(0.5Tsym/Tsamp) SNR(dB)forrealinputsignals
whereTsymis the symbol period of the signal andTsampis the sampling period of the signal.
For a complex baseband signal oversampled by a factor of 4, the EsN0 exceeds the corresponding SNR by 10 log10(4).
You can derive the relationship between EsN0 and SNR for complex input signals as follows:
Es/N0(dB)=10log10((S?Tsym)/(N/Bn))
=10log10((TsymFs)?(S/N))
=10log10(Tsym/Tsamp) SNR(dB)
where
-
S= Input signal power, in watts
-
N= Noise power, in watts
-
Bn= Noise bandwidth, in Hertz =Fs= 1/Tsamp.
-
Fs= Sampling frequency, in Hertz
可以获得上述标红公式EbN0和SNR关系
参数说明:
Coderate:编码码率
nBits:每个符号或码元中的信息比特数
例如:BPSK的nBits为1、QPSK的nBits为2、8PSK的nBits为3……
BPSK中把1,0映射为±1时为实数,最后一项为0.5*……
若将1、0映射为1 j和-1-j,最后一项是复数*……
4:仿真
EsN0与SNR关系验证
N = 300; % 符号个数 sym = randi([0 1],1,N); Fs = 9600; RB = 200; alpha = 0.3; % 滚降系数 fc = 3000; % 载波 fd = Fs/RB; % 过采倍数 EsN0 = 15; % 符号信噪比 dB为单位 LinEsN0 = 10^(EsN0/10); % 线性单位的EsN0 SNR = EsN0 - 10*log10(Fs/RB); % SNR 以dB为单位 %% 基带信号 M = 2; Len = N*Fs/RB; t = 0:1/Fs:(Len-1)/Fs; pha_bpsk = pskmod(sym,M); % 生成相位 figure;plot(pha_bpsk,'.b','MarkerSize',15); title('BPSK星座图; h = rcosine(RB,Fs,'fir/sqrt',alpha); % 根升余弦成形 bas_bpsk = rcosflt(pha_bpsk,RB,Fs,'filter',h).'; delay=(length(h) 1)/2; %%%时延
bas_bpsk=bas_bpsk(delay:end-delay+1);
sig_bpsk_pure = bas_bpsk.*exp(1j*2*pi*fc*t);
sig_bpsk_n = awgn(sig_bpsk_pure,SNR,'measured');
% EsN0 SNR的关系
sigPower = sum(abs(sig_bpsk_pure(:)).^2)/numel(sig_bpsk_pure); % 信号功率
sigma_n2=sigPower/10^(SNR/10); % 噪声功率
noise = sqrt(sigma_n2/2)* (randn(size(sig_bpsk_pure)) + 1i*randn(size(sig_bpsk_pure))); % 生成复高斯噪声
nlen = length(noise);
Et = sum(abs(noise).^2); % 噪声能量(时域)
Ef = sum(abs(fft(noise)/sqrt(nlen)).^2);% 噪声能量(频域)
wd = ones(1,fd); % 积分窗,长度为一个符号采样点数
Es = mean(conv(abs(sig_bpsk_pure).^2,wd)); % 单个符号的能量(时域符号周期积分求平均的方法)
Es1 = sum(abs(sig_bpsk_pure(:)).^2)/N; % 单个符号的能量(总能量除以符号个数)
N0 = mean(abs(noise).^2); % 噪声双边功率谱密度 通过时域求得
N0pri = mean(abs(fft(noise)/sqrt(nlen)).^2); % 噪声双边功率谱密度 通过频域求得
EsN0pri = Es/N0; % 通过计算符号能量和噪声双边功率谱密度得到的EsN0
SNRpri = 10*log10(sigPower/sigma_n2); % 信噪比
5:计算结果
代码中EsN0设置为15dB,计算结果因生成的随机符号序列不同可能会稍有不同,但都满足以上分析,计算结果分享如下
噪声能量
Et = 450.0291
Ef = 450.0291
信号功率
sigPower = 0.0208
噪声功率
sigma_n2 = 0.0315
信号单个符号能量
Es = 0.9928
Es1 = 0.9960
噪声双边功率谱密度
N0 = 0.0313
N0pri = 0.0313
EsN0线性单位值
LinEsN0 = 31.6228
EsN0通过Es/N0得到的值
EsN0pri = 31.7677
由公式得到的SNR值(dB为单位)
SNR = -1.8124
由10*log10(信号功率/噪声功率)计算得到的SNR值(dB为单位)
SNRpri = -1.8124
参考如下:
1:https://www.it610.com/article/1297202824274321408.htm
2:https://ww2.mathworks.cn/help/comm/ug/awgn-channel.html?searchHighlight=AWGN%20Channel&s_tid=srchtitle
3:https://blog.csdn.net/Onelasttime/article/details/109712925
4:https://blog.csdn.net/dyp922/article/details/81197607?utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-3.control&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7Edefault-3.control