
# 准备数据集 import torch.optim import torchvision from torch import nn from torch.utils.data import DataLoader from torch.utils.tensorboard import SummaryWriter import time # from model import * train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(), download=True) test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(), download=True) # length train_data_size = len(train_data) test_data_siz = len(test_data) print(f"训练数据集的长度如下:{
train_data_size}") print(f"测试数据集的长度如下:{
test_data_siz}") # 利用DataLoader加载 train_data_loader = DataLoader(train_data, batch_size=64) test_data_loader = DataLoader(test_data, batch_size=64) # 定义训练的设备
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 创建网络模型
class Lixinyu(nn.Module):
def __init__(self):
super(Lixinyu, self).__init__()
self.model = nn.Sequential(
nn.Conv2d(3, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 32, 5, 1, 2),
nn.MaxPool2d(2),
nn.Conv2d(32, 64, 5, 1, 2),
nn.MaxPool2d(2),
nn.Flatten(),
nn.Linear(1024, 64),
nn.Linear(64, 10)
)
def forward(self, x):
x = self.model(x)
return x
lixinyu = Lixinyu()
lixinyu = lixinyu.to(device) ##########直接写lixinyu.to(device)也可以,但对于imgs和targets必须重新赋值
# 损失函数
loss_fn = nn.CrossEntropyLoss()
loss_fn = loss_fn.to(device) ########
# 优化器
# learning_rate = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(lixinyu.parameters(), learning_rate)
# 设置训练网络参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 10
# 添加tensorboard
writer = SummaryWriter("p28")
start_time = time.time()
for i in range(epoch):
print(f"--------------------第{
i+1}轮训练开始了-----------------")
# 训练步骤开始
lixinyu.train() ####
for data in train_data_loader:
imgs, targets = data
imgs = imgs.to(device) ##############
targets = targets.to(device) ###########
output = lixinyu(imgs)
loss = loss_fn(output, targets)
optimizer.zero_grad()
loss.backward()
optimizer.step()
total_train_step += 1
if total_train_step % 100 == 0:
end_time = time.time()
print(f"训练次数{
total_train_step} 损失值{
loss.item()}耗费时间{
end_time-start_time}") # loss.item()标准写法,这里直接写loss也行
writer.add_scalar("train_loss", loss.item(), total_train_step)
# 测试步骤开始
lixinyu.eval() #####
total_test_loss = 0
total_accuracy = 0
with torch.no_grad():
for data in test_data_loader:
imgs, targets = data
imgs = imgs.to(device) ##############
targets = targets.to(device) ###########
outputs = lixinyu(imgs)
loss = loss_fn(outputs, targets)
total_test_loss = total_test_loss + loss.item()
accuracy = (outputs.argmax(1) == targets).sum()
total_accuracy = total_accuracy + accuracy
print(f'整体测试loss为:{
total_test_loss}')
print(f'整体测试数据集上的正确率:{
total_accuracy/test_data_siz}')
writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
writer.add_scalar("total_accuracy", total_accuracy/test_data_siz, total_test_step)
total_test_step = total_test_step + 1
torch.save(lixinyu, f"lixinyu_epoch{
i}.pth")
# torch.save(lixinyu.state_dict(), f"lixinyu_{i}.pth")
print("模型已保存")
writer.close()