资讯详情

p28完整的模型训练套路2

在模型训练中,你如何知道模型是否训练得很好,或者它是否满足了你想要的需求? 因此,当我们完成一轮训练时,通过测试数据集中的损失或准确性来评估我们的模型

不再调整测试数据集中,只使用现有模型进行测试

 # 准备数据集 import torch.optim import torchvision from torch import nn from torch.utils.data import DataLoader from model import *  train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(),                                           download=True) test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),                                          download=True) # length train_data_size = len(train_data) test_data_siz = len(test_data) print(f"训练数据集的长度如下:{ 
          train_data_size}") print(f"测试数据集的长度如下:{ 
          test_data_siz}")  # 利用DataLoader加载 train_data_loader = DataLoader(train_data, batch_size=64) test_data_loader = DataLoader(test_data, batch_size=64)  # 创建网络模型 lixinyu = Lixinyu()  # 损失函数 loss_fn = nn.CrossEntropyLoss) # 优化器 # learning_rate = 0.01 learning_rate = 1e-2 optimizer = torch.optim.SGD(lixinyu.parameters(), learning_rate) # 设置训练网络参数 # 记录训练的次数 total_train_step = 0 # 记录测试的次数 total_test_step = 0 # 训练的轮数 epoch = 5 for i in range(epoch): print(f"--------------------第{ 
           i+1}轮训练开始了-----------------") # 训练步骤开始 for data in train_data_loader: imgs, targets = data output = lixinyu(imgs) loss = loss_fn(output, targets) optimizer.zero_grad() loss.backward() optimizer.step() total_train_step += 1 print(f"训练次数{ 
           total_train_step} 损失值{ 
           loss.item()}") # loss.item()标准写法,这里直接写loss也行 # 测试步骤开始 total_test_loss = 0 with torch.no_grad(): for data in test_data_loader: imgs, targets = data outputs = lixinyu(imgs) loss = loss_fn(outputs, targets) total_test_loss = total_test_loss + loss.item() print(f'整体测试loss为:{ 
           total_test_loss}') 
训练次数781 损失值2.112248659133911
训练次数782 损失值2.173518180847168
整体测试loss为:318.5319519042969
--------------------第2轮训练开始了-----------------
训练次数783 损失值2.0448567867279053

发现存在训练loss打印过多,不易发现测试loss

 if total_train_step % 100 == 0:##########
            print(f"训练次数{ 
          total_train_step} 损失值{ 
          loss.item()}")  # loss.item()标准写法,这里直接写loss也行

优化,使用tensorboard


# 准备数据集
import torch.optim
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from model import *

train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
# length
train_data_size = len(train_data)
test_data_siz = len(test_data)
print(f"训练数据集的长度为:{ 
          train_data_size}")
print(f"测试数据集的长度为:{ 
          test_data_siz}")

# 利用DataLoader加载
train_data_loader = DataLoader(train_data, batch_size=256)
test_data_loader = DataLoader(test_data, batch_size=256)

# 创建网络模型
lixinyu = Lixinyu()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
# learning_rate = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(lixinyu.parameters(), learning_rate)

# 设置训练网络参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 5

# 添加tensorboard
writer = SummaryWriter("p28")

for i in range(epoch):
    print(f"--------------------第{ 
          i+1}轮训练开始了-----------------")

    # 训练步骤开始
    for data in train_data_loader:
        imgs, targets = data
        output = lixinyu(imgs)
        loss = loss_fn(output, targets)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_train_step += 1
        if total_train_step % 100 == 0:
            print(f"训练次数{ 
          total_train_step} 损失值{ 
          loss.item()}")  # loss.item()标准写法,这里直接写loss也行
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    total_test_loss = 0
    with torch.no_grad():
        for data in test_data_loader:
            imgs, targets = data
            outputs = lixinyu(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
    print(f'整体测试loss为:{ 
          total_test_loss}')
    writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
    total_test_step = total_test_step + 1
writer.close()

在这里插入图片描述

每一轮保存模型


# 准备数据集
import torch.optim
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from model import *

train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
# length
train_data_size = len(train_data)
test_data_siz = len(test_data)
print(f"训练数据集的长度为:{ 
          train_data_size}")
print(f"测试数据集的长度为:{ 
          test_data_siz}")

# 利用DataLoader加载
train_data_loader = DataLoader(train_data, batch_size=256)
test_data_loader = DataLoader(test_data, batch_size=256)

# 创建网络模型
lixinyu = Lixinyu()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
# learning_rate = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(lixinyu.parameters(), learning_rate)

# 设置训练网络参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 5

# 添加tensorboard
writer = SummaryWriter("p28")

for i in range(epoch):
    print(f"--------------------第{ 
          i+1}轮训练开始了-----------------")

    # 训练步骤开始
    for data in train_data_loader:
        imgs, targets = data
        output = lixinyu(imgs)
        loss = loss_fn(output, targets)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_train_step += 1
        if total_train_step % 100 == 0:
            print(f"训练次数{ 
          total_train_step} 损失值{ 
          loss.item()}")  # loss.item()标准写法,这里直接写loss也行
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    total_test_loss = 0
    with torch.no_grad():
        for data in test_data_loader:
            imgs, targets = data
            outputs = lixinyu(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
    print(f'整体测试loss为:{ 
          total_test_loss}')
    writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
    total_test_step = total_test_step + 1
    torch.save(lixinyu, f"lixinyu_epoch{ 
          i}.pth")##############
    print("模型已保存")#############

writer.close()

分类问题loss来反映并不如直接用正确率,在目标检测,实例分割中存在不同

1跨列,横向看,0跨行,列向看

测试正确率

D:\anaconda\python.exe C:/Users/ASUS/AppData/Roaming/JetBrains/PyCharm2021.3/extensions/test.py
tensor([1, 1])
tensor([False,  True])
Process finished with exit code 0

# 准备数据集
import torch.optim
import torchvision
from torch import nn
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter

from model import *

train_data = torchvision.datasets.CIFAR10("./dataset", train=True, transform=torchvision.transforms.ToTensor(),
                                          download=True)
test_data = torchvision.datasets.CIFAR10("./dataset", train=False, transform=torchvision.transforms.ToTensor(),
                                         download=True)
# length
train_data_size = len(train_data)
test_data_siz = len(test_data)
print(f"训练数据集的长度为:{ 
          train_data_size}")
print(f"测试数据集的长度为:{ 
          test_data_siz}")

# 利用DataLoader加载
train_data_loader = DataLoader(train_data, batch_size=256)
test_data_loader = DataLoader(test_data, batch_size=256)

# 创建网络模型
lixinyu = Lixinyu()

# 损失函数
loss_fn = nn.CrossEntropyLoss()

# 优化器
# learning_rate = 0.01
learning_rate = 1e-2
optimizer = torch.optim.SGD(lixinyu.parameters(), learning_rate)

# 设置训练网络参数
# 记录训练的次数
total_train_step = 0
# 记录测试的次数
total_test_step = 0
# 训练的轮数
epoch = 5

# 添加tensorboard
writer = SummaryWriter("p28")

for i in range(epoch):
    print(f"--------------------第{ 
          i+1}轮训练开始了-----------------")

    # 训练步骤开始
    for data in train_data_loader:
        imgs, targets = data
        output = lixinyu(imgs)
        loss = loss_fn(output, targets)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()
        total_train_step += 1
        if total_train_step % 100 == 0:
            print(f"训练次数{ 
          total_train_step} 损失值{ 
          loss.item()}")  # loss.item()标准写法,这里直接写loss也行
            writer.add_scalar("train_loss", loss.item(), total_train_step)

    # 测试步骤开始
    total_test_loss = 0
    total_accuracy = 0
    with torch.no_grad():
        for data in test_data_loader:
            imgs, targets = data
            outputs = lixinyu(imgs)
            loss = loss_fn(outputs, targets)
            total_test_loss = total_test_loss + loss.item()
            accuracy = (outputs.argmax(1) == targets).sum()
            total_accuracy = total_accuracy + accuracy
    print(f'整体测试loss为:{ 
          total_test_loss}')
    print(f'整体测试数据集上的正确率:{ 
          total_accuracy/test_data_siz}')
    writer.add_scalar("total_test_loss", total_test_loss, total_test_step)
    writer.add_scalar("total_accuracy", total_accuracy/test_data_siz, total_test_step)
    total_test_step = total_test_step + 1
    torch.save(lixinyu, f"lixinyu_epoch{ 
          i}.pth")
    print("模型已保存")

writer.close()

标签: p28j2mqjg密封连接器p28j4mj密封连接器p28k2aqjg连接器

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台