资讯详情

IEC61400-6 2020 塔架及基础设计要求 翻译 第7章 混凝土塔架和基础

目录

  • 7 Concrete towers and foundations 混凝土塔架及基础
    • 7.1 General 概述
    • 7.2 Basis of design 设计基础
      • 7.2.1 Reference standard for concrete design 混凝土设计参考标准
      • 7.2.2 Partial safety factors 分项安全系数
      • 7.2.3 Basic variables 基本变量
        • 7.2.3.1 Thermal actions 温度作用
          • 7.2.3.1.1 General requirements 一般要求
          • 7.2.3.1.2 Ultimate limit state requirements 承载力极限状态的要求
          • 7.2.3.1.3 Serviceability limit state requirements 正常使用极限状态的要求
        • 7.2.3.2 Prestress 预应力
    • 7.3 Materials 材料
    • 7.4 Durability 耐久性
      • 7.4.1 Durability requirements 耐久性要求
      • 7.4.2 Exposure classes 暴露等级
      • 7.4.3 Concrete cover 混凝土保护层
    • 7.5 Structural analysis 结构分析
      • 7.5.1 Finite element analysis 有限元分析
      • 7.5.2 Foundation slabs 基础板
      • 7.5.3 Regions with discontinuity in geometry or loads 几何或荷载不连续区域
      • 7.5.4 Cast in anchor bolt arrangements 地脚螺栓连接
    • 7.6 Concrete to concrete joints 混凝土节点
    • 7.7 Ultimate limit state 承载力极限状态
      • 7.7.1 General 概述
      • 7.7.2 Shear and punching shear 剪切和冲切
    • 7.8 Fatigue limit state 疲劳极限状态
      • 7.8.1 General 概述
      • 7.8.2 Reinforcement and prestressing steel fatigue failure 钢筋和预应力筋疲劳
      • 7.8.3 Concrete fatigue failure 混凝土疲劳失效
    • 7.9 Serviceability limit state 极限状态的正常使用
      • 7.9.1 Load dependent stiffness reduction 依赖于载荷的刚度退化
      • 7.9.2 Stress limitation 应力限值
      • 7.9.3 Crack control 裂缝控制
      • 7.9.4 Deformations 变形
    • 7.10 Execution 施工
      • 7.10.1 General 概述
      • 7.10.2 Requirements 要求
      • 7.10.3 lnspection of materials and products 检查材料和产品
      • 7.10.4 Falsework and formwork 脚手架和模板
      • 7.10.5 Reinforcement and embedded steel 钢筋和预埋钢筋
      • 7.10.6 Pre-stressing 预应力
      • 7.10.7 Precast concrete elements 预制混凝土构件
      • 7.10.8 Geometrical tolerances 几何公差
IEC61400-6是风电机组塔架机基础设计的标准文件,本系列文章主要针对IEC61400-6 翻译。第七章主要讲混凝土塔架和基础设计。对于大多数从事塔架设计的人来说,混凝土塔架是一个相对陌生的概念。我希望这些翻译能对员工有所帮助,欢迎大神指导。

7 Concrete towers and foundations 混凝土塔架及基础

7.1 General 概述

Concrete design principles are mostly well defined and documented in the literature, including reference standards. Clause 7 provides additional or more detailed rules and guidance that are specific to onshore wind turbine towers and foundations and complement the more general requirements of existing standards.

混凝土构件设计的一般规定可以参考现有的文献和标准,作为对这些出具一般要求的文献和标准的补充,本章对陆地风电机组的塔架和基础提供了更详细的规则和指导。

Clause 7 provides requirements in the form of general statements and analytical methods. Guidance on acceptable calculation methods which are considered to comply with the requirements are presented in Annex H to Annex K.

第七章以一般陈述和分析方法的形式提出要求。应考虑可接受的指导计算方法和附录H~附录K给出的要求是一致的。

7.2 Basis of design 设计基础

7.2.1 Reference standard for concrete design     混凝土设计参考标准

The reference standard shall comply with the basic principles of IEC 61400-1 or IEC 61400-2 and should be in compliance with ISO 19338. The reference standard shall give the principles required for the design against fatigue for all possible failure modes.

参考标准应符合国际规范 IEC 61400-1、 IEC 61400-2 和 ISO 19338 的基本要求,并包括混凝土构件不同疲劳失效模式下的设计规定。

7.2.2 Partial safety factors     分项安全系数

The partial safety factors given in IEC 61400-1, IEC 61400-2 and in 5.4 as well as the following factors shall be applied for design of concrete structures as the minimum requirements. The safety factors from the selected reference standard should be considered, and they shall fulfil at least the target reliability of IEC standards.

IEC 61400-1, IEC 61400-2以及5.4节给出的分项安全系数应作为混凝土结构设计中的最低要求。采用的参考标准中的安全系数也应该考虑,并且至少满足IEC标准的目标可靠度。

For the general verifications at the SLS, the partial safety factor for the materials can in general be taken as γ M = 1 , 0 \gamma _{M}=1,0 γM​=1,0.

正常使用极限状态下的验算可取材料分项系数为 γ M = 1.0 \gamma _{M}=1.0 γM​=1.0 。

In the case of prestressed concrete in ULS, the prestress losses and possible variations in the prestress shall be considered. The variations shall be considered by applying the least favourable of the factors γ f , p r e s t r e s s , f a v o u r a b l e \gamma _{f,prestress,favourable} γf,prestress,favourable​ and γ f , p r e s t r e s s , u n f a v o u r a b l e \gamma _{f,prestress,unfavourable} γf,prestress,unfavourable​·

预应力混凝土结构在承载力极限状态下的验算应该考虑预应力损失和变化。按照对结构最不利的状态采用系数 γ f , p r e s t r e s s , f a v o u r a b l e \gamma _{f,prestress,favourable} γf,prestress,favourable​ 和 γ f , p r e s t r e s s , u n f a v o u r a b l e \gamma _{f,prestress,unfavourable} γf,prestress,unfavourable​ 。

In the case of prestressed concrete in FLS and the SLS the variations shall be considered by applying the least favourable of the factors γ s u p \gamma _{sup} γsup​ and γ i n f \gamma _{inf} γinf​ . For FLS and SLS, the recommended factors to be used for post-tensioning with bonded tendons are γ s u p = 1 , 1 \gamma _{sup}=1,1 γsup​=1,1 and γ s u p = 0 , 9 \gamma _{sup}=0,9 γsup​=0,9 , but the recommended factors for post-tensioning with unbonded tendons and for pre-tensioning are γ s u p = 1 , 05 \gamma _{sup}=1,05 γsup​=1,05 and γ s u p = 0 , 95 \gamma _{sup}=0,95 γsup​=0,95.

疲劳极限状态和正常使用极限状态下的预应力混凝土需要通过采用系数 γ s u p \gamma _{sup} γsup​ 和 γ i n f \gamma _{inf} γinf​ 的最不利影响考虑预应力的变化,有粘结预应力筋取为 γ s u p = 1.1 \gamma _{sup}=1.1 γsup​=1.1 和 γ i n f = 0.9 \gamma _{inf}=0.9 γinf​=0.9 ,无粘结预应力筋取为 γ s u p = 1.05 \gamma _{sup}=1.05 γsup​=1.05 和 γ i n f = 0.95 \gamma _{inf}=0.95 γinf​=0.95 。

When measures are taken to reduce the uncertainty on the prestress load, the factors γ s u p \gamma _{sup} γsup​ and γ i n f \gamma _{inf} γinf​ can be taken as γ s u p = γ i n f = 1 , 0 \gamma _{sup}=\gamma _{inf}=1,0 γsup​=γinf​=1,0. While a high accuracy of the tensioning devices may improve the accuracy of the initial level of prestress, the remaining uncertainty with respect to the losses of prestress shall also be considered if rsup and rinf shall be modified.

当采用了有效措施降低预应力荷载测量的不确定度时, γ s u p \gamma _{sup} γsup​ 和 γ i n f \gamma _{inf} γinf​ 可以取为 γ s u p = γ i n f = 1.0 \gamma _{sup}=\gamma _{inf}=1.0 γsup​=γinf​=1.0 。虽然张紧装置的高精度可以提高初始预应力水平的精度,但如果要修改 γ s u p \gamma _{sup} γsup​ 和 γ i n f \gamma _{inf} γinf​ ,还应考虑与预应力损失有关的剩余不确定性。

Where high resistance of a member is unfavourable, an upper value of the characteristic resistance shall be used in order to give a low probability of failure of the adjoining structure.

当构件承载力较高产生不利影响时,应采用承载力特征值的上限值确保相邻结构的失效概率最低。

The upper value shall be chosen with the same level of probability of exceedance as the probability of lower values being underscored. In such cases, the partial safety factor for material shall be 1,0 for calculating the resistance that is used when actions are applied on adjoining members.

上限值的选取,应选择与其对应的下限值有相同超越概率的值。在这种情况下,计算当作用施加在相邻构件上的抗力时,材料的分项安全系数应为 1.0。

7.2.3 Basic variables     基本变量

7.2.3.1 Thermal actions     温度作用

7.2.3.1.1 General requirements     一般要求

Concrete towers are subject to the induced stress effect of temperature variations with respect to the temperature at the time of erection as well as to temperature gradients within the tower cross-section as shown in Figure 6.

  Figure 6 - Thermal effects around tower cross-section

Figure 6 - Thermal effects around tower cross-section

混凝土塔筒的设计应考虑横截面温度梯度的影响和吊装阶段温度应力的变化,如图 6 所示。

图 6 塔架截面的温度效应

    These characteristic temperature actions shall be considered in the design as explained in the following.   a)   Δ T 1 \Delta T_{1} ΔT1​ is a uniform temperature difference with respect to the temperature at the time of erection (constant temperature along circumference and across wall thickness). Δ T 1 \Delta T_{1} ΔT1​ shall be taken as the least favourable of

  • T e x t r e m e , m a x − T e r e c t i o n , m i n T_{extreme,max}-T_{erection,min} Textreme,max​−Terection,min​
  • T e x t r e m e , m i n − T e r e c t i o n , m a x T_{extreme,min}-T_{erection,max} Textreme,min​−Terection,max​ where T e x t r e m e , m i n T_{extreme,min} Textreme,min​ and T e x t r e m e , m a x T_{extreme,max} Textreme,max​ are the extreme temperature range as defined in IEC 61400-1 :2019, 6.4.2.1. T e r e c t i o n , m i n T_{erection,min} Terection,min​ and T e r e c t i o n , m a x T_{erection,max} Terection,max​ are the allowable temperature range to be defined for the erection of the tower. This temperature action may generary be neglected provided the tower does not incorporate or is not restrained by materials of differing thermal expansion coefficients. On the basis of Δ T 1 \Delta T_{1} ΔT1​, areasonable assumption shall be made for the temperature difference between the tower and foundation which may cause tension due to restraint.

设计中应考虑这些典型的温度作用,如下所述: a)

标签: 预制混凝土构件吊装用连接器

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台