资讯详情

自动(智能)驾驶系列|(一)简介与传感器

说明:本系列是自动(智能驾驶)感知融合的技术栈和思路(部分图片和数据来自网络)

这个主题是整理和复习你所学到的东西,并与那些想要学习这方面的人分享。这是本系列的第一篇文章,主要是介绍,以后会有更多的算法理解和实现。

本文分为自动驾驶和传感器简介两部分,传感器校准

1.自动驾驶及传感器简介

1..11自动驾驶分级和产业链

1.感知模块常见传感器

2.传感器的校准

2.1摄像头

2.激光雷达的校准(camera2Lidar)

2.3雷达标定

1.自动驾驶及传感器简介

1..11自动驾驶分级和产业链

自动驾驶依据SAE分为五个等级:

SAE即美国汽车工程师学会Society of Automotive Engineers)

目前大部分公司都完成了L2级辅助驾驶,功能开启时,驾驶员处于驾驶状态,目前最高的是L4级自动驾驶。

目前,自动驾驶模块分为感知、决策和执行模块。

在这里,我们主要展开感知模块。

1.感知模块常见传感器

可以看出,感知模块是执行的基础,包括摄像机、激光雷达、毫米波雷达、GPS、IMU等等。

感知的主要任务是通过硬件传感器,包括道路、静态物体和动态物体,涉及道路路边检测、障碍物检测、车辆检测、行人检测、交通信号检测等等。实际上完成检测任务还远远不够,还需要跟踪预测运动物体的估计,预计下一步。多传感器融合技术需要使用。图像、视频、点云等是获取数据的形式。

事实上,传感器集成并不是什么新鲜事。它早在上个世纪就出现了。传统上是基于卡尔曼滤波器等统计方法。现在,随着神经网络的发展,它促进了自动驾驶的发展。在数据驱动下,数据量大,网络结构创新丰富end2end热发展模式。

与传统视觉技术相比,神经网络:1.更容易迁移到新的目标上,只要有足够的样本,就可以训练得到相应的网络(迁移);2.提取具有遮挡物体的优良特性;3.对于光照等条件。;

除深度学习外,随着深度学习的发展NLP、和视觉方面,出现了对于不规则、非欧式数据上的网络模型,如Pointcloud等等。这些新技术使激光雷达和毫米波雷达能够替代感知领域来提高性能。

但目前,自动驾驶感知领域仍面临巨大挑战。目前,许多大型模型可以取得良好的效果,但不能实时处理数据,不同国家和地区的路况不同,甚至不同地区在中国也有很大的差异。路况复杂,视频任务处理能力往往无法与单帧图像效果相比。

智能驾驶汽车信息通常是汽车传感器的集成信息V2X5.道路协同通过G

基于这些信息,实现信息交互和共享,完成对汽车整体化的控制。这里我们只讨论传感器集成的感知。

首先要明确的是,传感器感知是软硬结合的产物,包括硬件的选择和软件算法的祝福。正如前面提到的,硬件包括相机、毫米波雷达、超声波雷达、红外探测器、IMU、GPS、激光雷达等。多传感器集成是从不同尺度整合信息,相互补充,相互学习,提高系统的稳定性和容错性。

从视觉开始,计算机视觉已经有了惊人的发展,就像我们一样,视觉也是无人驾驶汽车的主要感知方式。在交通信号灯、交通标志识别等方面发挥着重要作用。马斯克曾在开发会议上表示,他们的纯视觉方案可能会看到t恤上的停止符号。也许这就是为什么纯视觉方案的特斯拉也开始进入雷达界。通过处理收集到的图像,实现交通参与者的分类、分割、跟踪和分类任务,具有较强的语义信息提取能力,但在一些光线太弱或太强、视力屏蔽性能退化更严重,最重要的可见光摄像头不能全天候工作,因此现在一些车辆配备了被动红外传感器对交通参与者进行分类,也取得了一定的效果。著名的是红外制造商FLIR,旗下的BOSON甚至可以达到60hz,他们还公布了红外数据集(但现在已经下架)。鱼眼摄像头常用于摄像头(fisheye)针孔摄像头(pinhole)之分。当然,对于三维视觉,微软Kinect走进普通人的家,双目甚至三目也出现在今天的产品中。

接下来,我们来谈谈激光雷达。激光雷达的分类有很多种,如波段、结构工作等。ToF是激光雷达的主流原理。905nm与1550相比,它是最常见的激光雷达波段。nm便宜多了,都属于红外波段。结构上,目前最为常见的就是旋转机械式,其最显着的特点就是360度FOV,它是最成熟的激光雷达类型,精度高。缺点是机械旋转结构可能需要长期考虑。最重要的是它的价格。然而,随着国内制造商的加入和技术开发,价格大幅下降。根据业内人士的激光雷达开发也是复合摩尔定律 。另一种类似于速腾M激光雷达(半固体)的原理是MEMS Mirror,扫描通过微电机振动镜谐振完成。120度的水平视角,MEMS激光雷达原理图:

智能驾驶车辆配备的激光雷达:

激光雷达最大的优点是分辨率高,表现在距离和速度上角分辨率之上。稠密的点云可以实现对人、车辆、树木、建筑等的识别。但是在雨雪天气下可视距离会受到很大影响。

毫米波雷达是非常常见的雷达,其很好的速度分辨率可以对目标测速、测角以完成安全预警。场用的车载雷达都是FMCW,根据发出与收到的差频信号完成距离和角度的测量。同时根据不同chirp之间的关系多普勒测速。相比于激光雷达其具有很强的穿透性,对于金属材质相应明显,宽的频带带来了更远的测距范围,但是一般杂波较多需要处理、传统雷达只有平面信息和速度信息而缺少了高度信息,目前4D雷达的出现弥补了这一问题,并且能产生较为稠密的点云,是如今一个非产有前景的发展方向。

超声波雷达常用于避障,探测距离1~5m,精度1~3cm,穿透性强,结构简单,价格便宜。常安装在汽车的前后保险杠和侧面。其缺点是对温度敏感和方向性差。在自动驾驶的自动泊车、倒车辅助上发挥作用。

IMU,组合惯性导航,核心部件是陀螺仪和加速度计,根据陀螺仪位置建立坐标,根据加速度计输出位置。GPS和IMU结合,可以不断修订IMU长时间的位移漂移,并将IMU坐标系转化为GPS中目前准确的坐标系。不断更新当前位置和速度。RTK服务使得GNSS更加精确,但是一套IMU+GPS再加上RTK服务价格十分的昂贵。惯性导航系统是整个定位模块融合的核心。

下面是总结:

2.传感器的标定

以上介绍了自动驾驶主要的传感器,而每个传感器都有自己的坐标系,那么为了对于空间中的物体有一个统一的映射关系,对于设计好的传感器结构我们就需要对其进行标定将其统一到统一的时空坐标系下。这一点尤为重要,严重影响精度,由于汽车震动等原因需要我们隔段时间就对结构重新进行标定。对于固定的结构,我们将其视为三维刚体变换。

2.1摄像头

摄像头成像可以简化为“小孔成像”模型,对其来说存在四组坐标关系:即世界坐标系(以m为单位)、相机坐标系(以mm或m为单位)、图像物理坐标系(即物理成像平面,图中底片中心,单位一般为cm)像素坐标系(以pixel为单位)

具体推导可以参考:https://zhuanlan.zhihu.com/p/476032066

在计算内参时,给出了像素平面与相机坐标点的关系,并写成齐次式 

fx,fy为经过缩放的等效焦距。cx,cy为物面平移量,单位为pixel,构成内参矩阵。

内参信息一般用.ini或.yaml保存,标定的方法最有名是就是张正友标定法,原理是pnp,标定工具箱有ROS中的autoware工具箱以及MATLAB等

我们对P点再进行钢体变换就可以得到外参,即外参就是相机坐标系与世界坐标系的Rt变换。

相机一般都或多或少有畸变,分为枕形畸变和桶形畸变。一般是由透镜或者安装带来的,所以我们需要去畸变,畸变分为径向和切向畸变。所谓径向就是由镜头引起的,桶形即随着和光心距离增大放大倍率减小,枕形则相反;切向畸变则是有安装误差引起的,透镜和成像平面不平行。

 对于径向:

对于切向:

 有时候径向仅取两个参数k1,k2表示,切向取p1,p2从而构成五参数或者四参数书畸变矫正参数。

那么我们是先考虑空间关系还是先矫正呢,都可以,但是为了处理方便一般我们是先矫正畸变,后续就直接由对应关系而不用考虑畸变了。

其中:r是将归一化平面极坐标表示的极径等于根号下x方=y方

 像素平面对应:

 注:六个参数时,x,y方向的系数并不相同,只取二次项,有k1~k4加上p1和p2,一共六个参数。

2.2激光雷达的标定(camera2Lidar)

一般激光雷达的内参由厂家出厂时完成,表征的是激光发射器坐标与传感器定义的自身坐标系的关系。

所以我们需要标定激光雷达到相机的外参。一般有两种方法:target-based和target-less,即用类似棋盘格等实物来标定还是与目标场景重合(如确定一棵树等)度判断来标定,此种方法常常和IMU共同使用。

通过标定板,提取关键点,取大于4个对应带你使用最小二乘求解。

目前还有通过RANSAC方法标定的,这些都是离线办法,目前还有许多根据特征表达的在线标定。

工具仍然可以使用MATLAB和Autoware,当然也可以复现论文中的方法。

 2.3雷达标定

雷达标定是较为困难的部分,由于雷达的点云质量一般相比激光雷达要差些,密度小,但核心仍然是求解空间的对应关系。结构设计是关键,一般采用激光雷达和雷达作基准效果要优于相机与雷达做标定。

 此外还有兴起的深度学习联合标定方法CalibNet等。

这块主要涉及的知识有pnp,特征点、点云RANSAC等。

标签: 传感器m1旋转角度传感器的固定结构电机加装传感器常用高精度位移传感器360x95传感器1207系列加速度传感器

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台