资讯详情

高速采集方案使利用UHF局部放电检测技术监控电网成为现实

在整个20世纪,电能已经成为日常生活的必需品。不难想象,支持我们日常电能需求的电力网络非常复杂。人们需要处理各种问题,如维护或更换旧系统、连接旧设施和新的绿色发电解决方案、支持和应对能源需求的波动、长途能源传输、拥挤地区的输配电及相应标准,以及确保客户的整体满意度。在过去的几十年里,电力服务的中断一直是人们关注的焦点,并促进了监测、预测和预防设备问题的研究。一种叫局部放电(PD)物理现象已被用来检测这些问题。本文将简要介绍局部放电的概念和优点,以及不同的捕获技术,重点介绍超高频(UHF)系统,特别是其数据采集系统,然后介绍构建该系统的数据转换解决方案。

图片1.png

局部放电是发生在电气设备(电缆、开关设备、断路器等)绝缘层的放电。).这种放电被称为局部放电,因为它没有完全连接到两个导电端子。

图1 局部放电

局部放电可能发生在电网的许多部分,通常被某种绝缘介质(固体、液体、空气)包围。由于局部放电的局部性和重复性,变压器、电力电缆和附件的绝缘会随着时间的推移而损坏。局部放电是未来需要更换材料的良好指标,值得监测。人们可以通过局部电网中断尽快发现故障并进行预防性更换,对电力用户的影响最小。

如今,现代电缆的制造工艺非常成熟,很少生产有缺陷的产品,通常在到达安装环节之前被检测和丢弃。局部放电最重要的问题通常发生在接头和附件上。

如前所述,监测任何类型电网的局部放电都有助于制定维护计划。此外,通过确定局部放电的位置,有助于快速发现和解决问题。这对地下部分特别有用,因为挖掘成本高,还会产生道路封闭等其他影响。

目前,有许多技术可以检测局部放电,每种技术都有自己的优势、挑战和使用案例。本文主要关注超高频(UHF)该技术需要一个高速检测系统来正确检测捕获的短脉冲。表1简要总结了检测局部放电的不同技术。

图1:主要局部放电检测技术概述

请注意,下列技术并不适用于所有类型的设备。UHF和谐光学技术更适合气体绝缘(GIS)超高压(EHV)变压器。另外,可采用多种技术提高整个监控系统的性能。

原则上,UHF局部放电检测器可监测短放电脉冲(通常持续几纳秒)。由于脉冲时间很短,放电信号的频率范围可以从直流跨越到几个GHz。使用信号的UHF有许多优点。该频段受干扰影响较小,更容易采取措施减少干扰。此外,采用最新的UHF传感器数据转换器技术可以实现高灵敏度UHF检测系统可以实现更好的定位精度和默认模式识别。对于电网监控,这意味着可以更好地找出故障的位置,并评估其影响。

局部放电定位可以通过多种技术实现。每种技术需要多个传感通道,并通过比较每个通道捕获的脉冲的不同参数来确定位置。大多数解决方案需要至少4个传感通道,以实现1米或更好的局部放电定位精度。

目前,最引人注目的解决方案是三边测量技术。脉冲从局部放电到传感通道位置的传输时间(飞行时间)与两者之间的距离有关。局部放电的位置可以通过比较不同传感通道脉冲到达的相对时间来推断,一般可以达到1米或更好的精度。

另一种解决方案是考虑不同传感通道捕获的信号强度。信号强度与局部放电与传感通道之间的距离有关。因此,局部放电事件可以通过比较不同传感通道捕获的信号强度来准确定位。

采集系统的目标是准确捕获包含局部放电信息的局部放电传感器的模拟输出。通过信号调节,模拟信号转换为数字域,然后处理,以确定局部放电是否发生,并获得局部放电的位置和任何其他感兴趣的参数。

图 2:采集系统的高级框图

采集系统中最关键的部件之一是ADC(模数转换器)用于将传感器的输出转换为主机PC可处理的数字数据流。由于局部放电的脉冲特性,UHF分量可达到1ns以下瞬态时间。要准确捕捉脉冲,需要考虑ADC多参数。如-3dB模拟输入带宽、分辨率、采样速度、通道数等。

为准确捕捉脉冲频率,ADC如果脉冲频率高于ADC系统会过滤掉带宽和部分脉冲信息。经验规则之一是,ADC为了获得足够的精度,带宽需要超过脉冲最大频率分量的5到10倍。脉冲瞬态时间可以转换为频率:

Bp是脉冲的带宽,Tr脉冲的上升/下降时间为10-90%。这个公式是基于RC低通滤波器响应是一种简单的计脉冲捕获所需带宽的方法。例如,10-90%的上升时间是10-90%ns,脉冲带宽为350MHz,脉冲应准确恢复,ADC的-3dB模拟输入带宽应在1.75~3.5GHz之间。

请注意,不同的系统有不同的要求,所以要求更高ADC带宽的需求也有所不同。一般来说,我们希望从设备中获得的信息越多,脉冲捕获的精度就越高,对带宽的要求也就越高。相反,如果设备的目标是识别是否有局部放电,那么脉冲频率为2到3倍的带宽就足够了。

垂直(电压)分辨率也可以理解。它表示每次采样值的准确性。更高的分辨率可以提高转换精度。例如,分辨率为10位的ADC1024个可能值对应满量程。假设满量程电压为1V,每个步长对应977μV,对于理想ADC,输入信号以 /-488μV采样和转换垂直误差。因此,很容易理解,如果分辨率增加2位,精度将提高4倍 。虽然提高全量程电压以捕捉更大的脉冲会降低电压分辨率,但应注意垂直分辨率表示理论性能。在实际应用中,不同类型的噪声会影响DC的性能。因此,在评估垂直分辨率时,最好同时考虑ENOB(有效位数),因为它包含了噪声的影响。

类似地,系统的要求决定了ENOB的需求。一般来说,ENOB越大,处理的复杂度越高,而从局部放电脉冲中提取的信息也越详细。

也可以理解为水平(时间)分辨率。它表示ADC每秒采样的次数。较高的采样率对应较短的连续采样的持续时间,以及更高的脉冲时序精度。理论上,根据香农-奈奎斯特定理,恢复给定脉冲的最小采样速度是2*Bp。在我们前面的350MHz脉冲宽度的例子中,700Msps采样率的ADC即可满足要求。如前所述,设备的目标决定需求。如果需要从脉冲中提取更复杂的信息,如局部放电的位置、局部放电的能量或能量模式等,则需要更高的采样速度。

可简单理解为可用的采集通道的数量。多通道局部放电系统的一个主要优点是,当使用4个通道时,可通过三边测量技术确定故障发生的位置。此外,更多的通道数可实现同时测量,对大型系统来说非常有用,例如在变电站控制大楼采集所有局部放电信息,和/或传输这些信息以进行远程监控。

采集系统的另一个关键部分是与ADC接口的前端处理单元。在大多数情况下会使用FPGA完成这一工作。FPGA与ADC连接,完成第一阶段的处理,然后把处理后的数据发给主机PC,主机PC会对数据进行额外的后期处理、存储和转译,决定当检测到局部放电时应如何采取行动。FPGA的并行处理能力和高级接口选项特别适合这种应用。

此外,FPGA需要能够处理高速ADC产生的海量数据。例如,以2Gsps采样率工作的四通道10位ADC会产生80Gbps或10Gbps的原始数据。FPGA能够与ADC对接,恢复所有数据,进行第一级实时处理(如数字滤波、非线性噪声抑制、数字基线稳定等),然后根据复杂的触发机制选择有用的数据。在某些情况下,为了进一步减少传输到主机PC的数据量,第二级处理(如脉冲分析)也需要在FPGA中执行。当然,也可以选择在主机PC中执行第二级处理。

                                                                                        图 3:处理步骤概述

Teledyne SP Devices开发高性能数字采集卡(数字化仪),将ADC和FPGA集成到一个支持信号捕获和处理的完整硬件解决方案中。这些数字化仪可直接与主机PC连接,并提供强大的固件功能和软件解决方案。

如图表2 所示,这三款数字化仪特别为UHF局部放电 检测设备提供了很好的解决方案。

                                                                 图表 2:适用于UHF局部放电系统的Teledyne SP Devices数字化仪

如上表所示,ADQ8-4X提供了一个成本优化的解决方案,具有紧凑的尺寸和较多的通道数量。它还支持多个板卡和机箱之间的同步,精度为200ps,为大区域的多个复杂检测系统的设计提供便利。除此之外,还可提供8通道1Gsps采样率的版本(ADQ8-8C)。

ADQ14提供了比ADQ8更高的分辨率,因此能够实现更精确的脉冲测量。它可配置为单通道、双通道或四通道,后者更适合于需定位或量化局部放电效应的系统。

最后,为了达到极致的性能,ADQ7DC提供更少的通道数,但具有高达10Gsps的采样速度,可用于高性能、大带宽的设备。

这三款数字化仪都有不同的固件选项,包含一般的采集和触发功能,以及固件开发工具选项,用户可以在板上FPGA上实现自己的定制算法。在软件方面,易于使用的Digitizer Studio GUI可方便地配置、采集、显示、分析和储存数据。另外,API和设计例程可帮助优化软件,以满足更复杂和/或专用系统的需求。

此外,ADQ14和ADQ7DC都可提供10GbE的形状参数。这对变电站之类的严苛环境是一个优点,因为它提供了数字化仪和主机PC之间的完全电气隔离。光纤还意味着PC和数字化仪之间的距离可以很长,可用于包含多个分布于大区域的测量点的大型设备。

文章来源:Teledyne Imaging

标签: 线缆连接器的导电端子

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台