资讯详情

二叉树链式结构及实现(前序、中序、后序遍历、层序遍历、分治算法、递归、数据结构、C语言)

文章目录

  • 前言
  • 一、二叉树链结构
  • 二、二叉树遍历
    • (一)前、中、后序遍历的基本概念
    • (二)实现前中后序遍历
      • 1、二叉树的前序遍历
      • 二、二叉树中序遍历
      • 3.二叉树的后序遍历
    • (三)其他相关函数接口
      • 1.要求所有结点的数量
      • 2.叶结点的数量
      • 3.要求K层的结点数
      • 四、二叉树的深度
      • 5.二叉树搜索值为x的结点
      • 销毁二叉树 - 后序遍历
    • (四)层序遍历
      • 1、void LevelOrder(BTNode* root)
      • 2、Queue.h
      • 3、Queue.c
      • 4、test.c
      • 5.判断二叉树是否完全是二叉树(*)


前言

  • 本博客主要介绍了二叉树链结构及相关界面函数的实现,包括前、中、后顺序的遍历,并运用分治的思路编写相关函数
  • 重点:
  • 代码:C语言

一、二叉树链结构

链式存储结构是指用链表表示二叉树,即用链表示元素的逻辑关系。 。链式结构分为二叉链和三叉链。目前,二叉链通常在我们的学习中,以下课程 学习红黑树等高级数据结构将使用三叉链。


  • :在学习二叉树的基本操作之前,你需要创建一棵二叉树,然后学习它的相关基本操作。因为现在我们对二叉树的结构还不够深入,为了降低学习成本,,快速进入二叉树的操作学习,当二叉树的结构几乎被理解时,我们新研究二叉树的真正创造方法。
typedef int BTDateType; typedef struct BinaryTreeNode { 
          struct BinaryTreeNode* left;  struct BinaryTreeNode* right;  BTDateType date; }BTNode;  BTNode* BuyNode(BTDateType x) { 
          BTNode* node = (BTNode*)malloc(sizeof(BTNode));  assert(node);   node->date = x;  node->left = NULL;  node->right = NULL;   return node; }  BTNode* CreatBinaryTree() { 
          BTNode* node1 = BuyNode(1);  BTNode* node2 = BuyNode(2);
	BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
	BTNode* node5 = BuyNode(5);
	BTNode* node6 = BuyNode(6);

	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;

	return node1;
}
  • 注意:上述代码并不是创建二叉树的方式,真正创建二叉树方式后序详解重点讲解。该代码创建出的二叉树如下图所示,后序操作均围绕该树: 在这里插入图片描述

  • 看二叉树基本操作前,再

  • 从概念中可以看出,二

二、二叉树的遍历

(一)、前中后序遍历的基本概念

学习二叉树结构,最简单的方式就是遍历。。访问结点所做的操作依赖于具体的应用问题。 遍历是二叉树上最重要的运算之一,也是二叉树上进行其它运算的基础。


  1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问的操作发生在遍历其左右子树
  2. 中序遍历(Inorder Traversal)——访问的操作发生在遍历其左右子树之
  3. 后序遍历(Postorder Traversal)——访问的操作发生在遍历其左右子树

由于被访问的结点必是某子树的根,所以。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。 前中后序遍历的函数接口如下:

// 二叉树前序遍历
void PreOrder(BTNode* root);
// 二叉树中序遍历
void InOrder(BTNode* root);
// 二叉树后序遍历
void PostOrder(BTNode* root);

下面,中序与后序图解类似,这里就不过多赘述。

  • 主要是利用分治思想,转换成左子树和右子树的遍历,然后再继续分治下去,直到边界


(二)、前中后序遍历的实现

1、二叉树的前序遍历

void PreOrder(BTNode* root)
{ 
        
	if (root == NULL)
	{ 
        
		printf("# ");
		return;
	}

	printf("%d ", root->date);
	PreOrder(root->left);
	PreOrder(root->right);
}

2、二叉树的中序遍历

void InOrder(BTNode* root)
{ 
        
	if (root == NULL)
	{ 
        
		printf("# ");
		return;
	}

	InOrder(root->left);
	printf("%d ", root->date);
	InOrder(root->right);
}

3、二叉树的后序遍历

void PosOrder(BTNode* root)
{ 
        
	if (root == NULL)
	{ 
        
		printf("# ");
		return;
	}

	PosOrder(root->left);
	PosOrder(root->right);
	printf("%d ", root->date);
}

(三)、其他相关的函数接口

运用,还有以下几个相关的函数接口:

//用分治思想 - 求所有结点的数量
int TreeSize(BTNode* root)

//求叶子结点的数量 - 分治
int TreeLeafSize(BTNode* root)

//求第K层的结点个数 K >= 1
int TreeKLevel(BTNode* root, int k)

//求二叉树的深度
int TreeDepth(BTNode* root)

//二叉树查找值为x的结点
BTNode* TreeFind(BTNode* root, BTDateType x)

1、求所有结点的数量

int TreeSize(BTNode* root)
{ 
        
	return root == NULL ? 0 :
		TreeSize(root->left) + TreeSize(root->right) + 1;
}

2、求叶子结点的数量

int TreeLeafSize(BTNode* root)
{ 
        
	if (root == NULL)
		return 0;

	if (root->left == NULL && root->right == NULL)
		return 1;

	return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

3、求第K层的结点个数

int TreeKLevel(BTNode* root, int k)
{ 
        
	assert(k >= 1);
	if (root == NULL)
		return 0;

	if (k == 1)
		return 1;

	return TreeKLevel(root->left, k - 1) + TreeKLevel(root->right, k - 1);
}

4、求二叉树的深度

int TreeDepth(BTNode* root)
{ 
        
	if (root == NULL)
		return 0;

	int leftDepth = TreeDepth(root->left);
	int rightDepth = TreeDepth(root->right);
	return leftDepth > rightDepth ? leftDepth + 1 : rightDepth + 1;
}

5、二叉树查找值为x的结点

BTNode* TreeFind(BTNode* root, BTDateType x)
{ 
        
	if (root == NULL)
		return NULL;
	
	if (root->date == x)
		return root;

	BTNode* ret1 = TreeFind(root->left, x);

	if (ret1)
		return ret1;

	BTNode* ret2 = TreeFind(root->right, x);

	if (ret2)
		return ret2;

	return NULL;
}

6、二叉树的销毁 - 后序遍历

void TreeDestroy(BTNode* root)
{ 
        
	if (root == NULL)
	{ 
        
		return;
	}

	TreeDestroy(root->left);
	TreeDestroy(root->right);
	free(root);
}


(四)、层序遍历

  • :除了先序遍历、中序遍历、后序遍历外,还可以对二叉树进行层序遍历。设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,。 层序遍历一般,函数接口如下:
// 层序遍历
void LevelOrder(BTNode* root);

1、void LevelOrder(BTNode* root)

// 层序遍历
//队列的数据应该存结点的指针
void LevelOrder(BTNode* root)
{ 
        
	Queue q;
	QueueInit(&q);

	if (root)
	{ 
        
		//进队列
		QueuePush(&q, root);
	}

	while (!QueueEmpty(&q))
	{ 
        
		//出对头的数据
		BTNode* front = QueueFront(&q);
		printf("%d ", front->date);
		QueuePop(&q);//释放的是队列的结点,而不是树的结点

		//每一层从左至右,依次入队
		if (front->left)
		{ 
        
			QueuePush(&q, front->left);
		}

		if (front->right)
		{ 
        
			QueuePush(&q, front->right);
		}
	}
	printf("\n");


	QueueDestroy(&q);
}

2、Queue.h

#pragma once

#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <stdbool.h>


//链式结构:表示队列
//前置声明
struct BinaryTreeNode;

typedef struct BinaryTreeNode* QDateType;

typedef struct QueueNode
{ 
        
	struct QueueNode* next;
	QDateType date;
}QNode;

//队列的结构
typedef struct Queue
{ 
        
	//int size;
	QNode* head;
	QNode* tail;
}Queue;

//初始化队列
void QueueInit(Queue* pq);

//销毁队列
void QueueDestroy(Queue* pq);

//队尾入队列
void QueuePush(Queue* pq, QDateType x);

//队头出队列
void QueuePop(Queue* pq);

//获取队列头部元素
QDateType QueueFront(Queue* pq);

//获取队列队尾元素
QDateType QueueBack(Queue* pq);

//检测队列是否为空
bool QueueEmpty(Queue* pq);

//获取队列的长度(队列中存放数据的个数)
int QueueSize(Queue* pq);


3、Queue.c

#define _CRT_SECURE_NO_WARNINGS 1
#pragma warning(disable:6031)

#include "Queue.h"

void QueueInit(Queue* pq)
{ 
        
	assert(pq);
	pq->head = NULL;
	pq->tail = NULL;
}

void QueueDestroy(Queue* pq)
{ 
        
	assert(pq);
	QNode* cur = pq->head;
	while (cur)
	{ 
        
		QNode* next = cur->next;
		free(cur);
		cur = next;
	}

	pq->head = pq->tail = NULL;
}

void QueuePush(Queue* pq, QDateType x)
{ 
        
	assert(pq);
	QNode* newnode = (QNode*)malloc(sizeof(QNode));
	if (newnode == NULL)
	{ 
        
		printf("malloc fail");
		exit(-1);
	}

	newnode->date = x;
	newnode->next = NULL;

	if (pq->tail == NULL)
	{ 
        
		pq->head = pq->tail = newnode;
	}
	else
	{ 
        
		pq->tail->next = newnode;
		pq->tail = newnode;
	}
}

void QueuePop(Queue* pq)
{ 
        
	assert(pq);
	assert(!QueueEmpty(pq));

	if (pq->head->next == NULL)//只剩下一个结点
	{ 
        
		free(pq->head);
		pq->head = pq->tail = NULL;
	}
	else//多个结点
	{ 
        
		QNode* next = pq->head->next;
		free(pq->head);
		pq->head = next;
	}
}

QDateType QueueFront(Queue* pq)
{ 
        
	assert(pq);
	assert(!QueueEmpty(pq));

	return pq->head->date;
}

QDateType QueueBack(Queue* pq)
{ 
        
	assert(pq);
	assert(!QueueEmpty(pq));

	return pq->tail->date;
}

bool QueueEmpty(Queue* pq)
{ 
        
	assert(pq);

	return pq->head == NULL;
}

int QueueSize(Queue* pq)
{ 
        
	assert(pq);
	int size = 0;
	QNode* cur = pq->head;
	while (cur)
	{ 
        
		size++;
		cur = cur->next;
	}

	return size;
}

4、test.c

#define _CRT_SECURE_NO_WARNINGS 1
#pragma warning(disable:6031)

#include "Heap.h"
#include "Queue.h"

typedef int BTDateType;
typedef struct BinaryTreeNode
{ 
        
	struct BinaryTreeNode* left;
	struct BinaryTreeNode* right;
	BTDateType date;
}BTNode;

BTNode* BuyNode(BTDateType x)
{ 
        
	BTNode* node = (BTNode*)malloc(sizeof(BTNode));
	assert(node);

	node->date = x;
	node->left = NULL;
	node->right = NULL;

	return node;
}

BTNode* CreatBinaryTree()
{ 
        
	BTNode* node1 = BuyNode(1);
	BTNode* node2 = BuyNode(2);
	BTNode* node3 = BuyNode(3);
	BTNode* node4 = BuyNode(4);
	BTNode* node5 = BuyNode(5);
	BTNode* node6 = BuyNode(6);

	node1->left = node2;
	node1->right = node4;
	node2->left = node3;
	node4->left = node5;
	node4->right = node6;

	return node1;
}



// 层序遍历
//队列的数据应该存结点的指针
void LevelOrder(BTNode* root)
{ 
        
	Queue q;
	QueueInit(&q);

	if (root)
	{ 
        
		//进队列
		QueuePush(&q, root);
	}

	while (!QueueEmpty(&q))
	{ 
        
		//出对头的数据
		BTNode* front = QueueFront(&q);
		printf("%d ", front->date);
		QueuePop(&q);

		//每一层从左至右,依次入队
		if (front->left)
		{ 
        
			QueuePush(&q, front->left);
		}

		if (front->right)
		{ 
        
			QueuePush(&q, front->right);
		}
	}
	printf("\n");


	QueueDestroy(&q);
}


int main()
{ 
        
	BTNode* root = CreatBinaryTree();

	LevelOrder(root);

	return  

标签: 螺栓二极管nlr506xxld

锐单商城拥有海量元器件数据手册IC替代型号,打造 电子元器件IC百科大全!

锐单商城 - 一站式电子元器件采购平台